CAM assay Dotaz Zobrazit nápovědu
The combination of in ovo and ex ovo chorioallantoic membrane (CAM) assay provides an excellent platform which extends its relevance in studying carcinogenesis to the field of screening of anticancer activity of platinum nanoparticles (PtNPs) and further study of the amino acids' fluctuations in liver and brain. PtNPs are promising candidates for replacing cisplatin (CDDP); however, insufficient data of their antitumor efficiency and activity on the cancer-related amino acid metabolism are available, and the assessment of the in vivo performance has barely scratched the surface. Herein, we used CAM assay as in vivo model for screening of novel therapeutic modalities, and we conducted a comparative study of the effects of CDDP and polyvinylpyrrolidone coated PtNPs on MDA-MB-231 breast cancer xenograft. PtNPs showed a higher efficiency to inhibit the tumor growth and metastasis compared to CDDP. The amino acids profiling in the MDA-MB-231 cells revealed that the PtNPs had an overall depleting effect on the amino acids content. Noteworthy, more side effects to amino acid metabolism were deduced from the depletion of the amino acids in tumor, brain, and liver upon CDDP treatment. Different sets of enzymes of the tricarboxylic acid (TCA) cycle were targeted by PtNPs and CDDP, and while mRNA encoding multiple enzymes was downregulated by PtNPs, the treatment with CDDP affected only two TCA enzymes, indicating a different mechanism of action. Taken together, CAM assay represents and invaluable model, demonstrating the PtNPs capability of repressing angiogenesis, decrease amino acid contents and disrupt the TCA cycle.
- Klíčová slova
- Amino acids metabolism, Breast cancer, CAM assay, Cisplatin, Platinum nanoparticles, TCA cycle,
- Publikační typ
- časopisecké články MeSH
In recent years, the chorioallantoic membrane (CAM) has emerged as a crucial component of biocompatibility testing for biomaterials designed for regenerative strategies and tissue engineering applications. This study explores angiogenic potential of an innovative acellular and porous biopolymer scaffold, based on polyhydroxybutyrate and chitosan (PHB/CHIT), using the ex ovo quail CAM assay as an alternative to the conventional chick CAM test. On embryonic day 6 (ED6), we placed the tested biomaterials on the CAM alone or soaked them with various substances, including vascular endothelial growth factor (VEGF-A), saline, or the endogenous angiogenesis inhibitor Angiostatin. After 72 h (ED9), we analyzed blood vessels formation, a sign of ongoing angiogenesis, in the vicinity of the scaffold and within its pores. We employed marker for cell proliferation (PHH3), embryonic endothelium (WGA, SNA), myofibroblasts (α-SMA), and endothelial cells (QH1) for morphological and histochemical analysis. Our findings demonstrated the robust angiogenic potential of the untreated scaffold without additional influence from the angiogenic factor VEGF-A. Furthermore, gene expression analysis revealed an upregulation of pro-angiogenic growth factors, including VEGF-A, ANG-2, and VE-Cadherin after 5 days of implantation, indicative of a pro-angiogenic microenvironment. These results underscore the inherent angiogenic potential of the PHB/CHIT composite. Additionally, monitoring of CAM microvilli growing to the scaffold provides a methodology for investigating the biocompatibility of materials using the ex ovo quail CAM assay as a suitable alternative model compared to the chicken CAM platform. This approach offers a rapid screening method for biomaterials in the field of tissue repair/regeneration and engineering.
- Klíčová slova
- Angiogenesis, Avian animal model, Bone regeneration, Chitosan, Polyhydroxybutyrate,
- MeSH
- biokompatibilní materiály * farmakologie MeSH
- chitosan * farmakologie MeSH
- chorioalantoická membrána * účinky léků MeSH
- fyziologická neovaskularizace účinky léků MeSH
- křepelky a křepelovití embryologie MeSH
- testování materiálů MeSH
- tkáňové podpůrné struktury chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály * MeSH
- chitosan * MeSH
PURPOSE: The chick chorioallantoic membrane (CAM) assay can provide an alternative versatile, cost-effective, and ethically less controversial in vivo model for reliable screening of drugs. In the presented work, we demonstrate that CAM assay (in ovo and ex ovo) can be simply employed to delineate the effects of cisplatin (CDDP) and ellipticine (Elli) on neuroblastoma (Nbl) cells in terms of their growth and metastatic potential. METHODS: The Nbl UKF-NB-4 cell line was established from recurrent bone marrow metastases of high-risk Nbl (stage IV, MYCN amplification, 7q21 gain). Ex ovo and in ovo CAM assays were optimized to evaluate the antimetastatic activity of CDDP and Elli. Immunohistochemistry, qRT-PCR, and DNA isolation were performed. RESULTS: Ex ovo CAM assay was employed to study whether CDDP and Elli exhibit any inhibitory effects on growth of Nbl xenograft in ex ovo CAM assay. Under the optimal conditions, Elli and CDDP exhibited significant inhibition of the size of the primary tumor. To study the efficiency of CDDP and Elli to inhibit primary Nbl tumor growth, intravasation, and extravasation in the organs, we adapted the in ovo CAM assay protocol. In in ovo CAM assay, both studied compounds (CDDP and Elli) exhibited significant (p < 0.001) inhibitory activity against extravasation to all investigated organs including distal CAM. CONCLUSIONS: Taken together, CAM assay could be a helpful and highly efficient in vivo approach for high-throughput screening of libraries of compounds with expected anticancer activities.
- Klíčová slova
- CAM assay, drug testing, extracranial solid tumor, metastasis, neuroblastoma, preclinical trials,
- Publikační typ
- časopisecké články MeSH
Cancer cells facilitate tumor growth by creating favorable tumor micro-environments (TME), altering homeostasis and immune response in the extracellular matrix (ECM) of surrounding tissue. A potential factor that contributes to TME generation and ECM remodeling is the cytoskeleton-associated human death-associated protein kinase 1 (DAPK1). Increased tumor cell motility and de-adhesion (thus, promoting metastasis), as well as upregulated plasminogen-signaling, are shown when functionally analyzing the DAPK1 ko-related proteome. However, the systematic investigation of how tumor cells actively modulate the ECM at the tissue level is experimentally challenging since animal models do not allow direct experimental access while artificial in vitro scaffolds cannot simulate the entire complexity of tissue systems. Here, we used the chorioallantoic membrane (CAM) assay as a natural, collagen-rich tissue model in combination with all-optical experimental access by multiphoton microscopy (MPM) to study the ECM remodeling potential of colorectal tumor cells with and without DAPK1 in situ and even in vivo. This approach demonstrates the suitability of the CAM assay in combination with multiphoton microscopy for studying collagen remodeling during tumor growth. Our results indicate the high ECM remodeling potential of DAPK1 ko tumor cells at the tissue level and support our findings from proteomics.
- Klíčová slova
- ECM remodeling, MPM, collagen, colon cancer, uPAR,
- Publikační typ
- časopisecké články MeSH
The chorioallantoic membrane (CAM) is a highly vascularized avian extraembryonic membrane widely used as an in vivo model to study angiogenesis and its inhibition in response to tissues, cells, or soluble factors. In recent years, the use of CAM has become an integral part of the biocompatibility testing process for developing biomaterials intended for regenerative strategies and tissue engineering applications. In this study, we used the chicken ex ovo CAM assay to investigate the angiogenic potential of innovative acellular biopolymer polyhydroxybutyrate/chitosan (PHB/CHIT) scaffold, which is intended for the treatment of hard tissue defects, depending on treatment with pro- and anti-angiogenic substances. On embryonic day (ED) 7, the experimental biomaterials were placed on the CAM alone or soaked in vascular endothelial growth factor (VEGF-A), saline solution (PHY), or tyrosine kinase inhibitor (SU5402). After 72 h, the formation of vessels was analyzed in the surrounding area of the scaffold and inside the pores of the implants, using markers of embryonic endothelium (WGA, SNA), myofibroblasts (α-SMA), and macrophages (KUL-01). The morphological and histochemical analysis showed strong angiogenic potential of untreated scaffolds without additional effect of the angiogenic factor, VEGF-A. The lowest angiogenic potential was observed in scaffolds soaked with SU5402. Gene expression of pro-angiogenic growth factors, i.e., VEGF-A, ANG-2, and VE-CAD, was upregulated in untreated scaffolds after 72 h, indicating a pro-angiogenic environment. We concluded that the PHB/CHIT has a strong endogenous angiogenic potential and could be promising biomaterial for the treatment of hard tissue defects.
- Klíčová slova
- CAM assay, angiogenesis, biomaterial, bone tissue engineering, chitosan, polyhydroxybutyrate, regeneration,
- Publikační typ
- časopisecké články MeSH
Antimicrobial peptides are currently considered as promising antiviral compounds. Current assays to evaluate the effectivity of peptides against enveloped viruses based on liposomes or hemolysis are encumbered by the artificial nature of liposomes or distinctive membrane composition of used erythrocytes. We propose a novel assay system based on enzymatic Ebola virus-like particles containing sensitive luciferase reporter. The assay was validated with several cationic and anionic peptides and compared with lentivirus inactivation and hemolytic assays. The assay is sensitive and easy to perform in standard biosafety level laboratory with potential for high-throughput screens. The use of virus-like particles in the assay provides a system as closely related to the native viruses as possible eliminating some issues associated with other more artificial set ups. We have identified CAM-W (KWKLWKKIEKWGQGIGAVLKWLTTWL) as a peptide with the greatest antiviral activity against infectious lentiviral vectors and filoviral virus-like particles.
- Klíčová slova
- Antimicrobial peptides, Cytotoxic peptides, Ebola, Hemolytic activity, Lentivirus, Marburg, Nanoluciferase, Virolytic activity, Virus-like particles,
- MeSH
- anionty MeSH
- antivirové látky farmakologie MeSH
- hemoragická horečka Ebola prevence a kontrola virologie MeSH
- kationické antimikrobiální peptidy farmakologie MeSH
- Lentivirus účinky léků genetika MeSH
- lidé MeSH
- liposomy chemie MeSH
- peptidy farmakologie MeSH
- virus Ebola účinky léků patogenita MeSH
- VLP vakcíny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- anionty MeSH
- antivirové látky MeSH
- kationické antimikrobiální peptidy MeSH
- liposomy MeSH
- peptidy MeSH
- VLP vakcíny MeSH
- Klíčová slova
- LC3, autolysosome, autophagosome, chaperone-mediated autophagy, flux, lysosome, macroautophagy, phagophore, stress, vacuole,
- MeSH
- autofagie * fyziologie MeSH
- biotest metody normy MeSH
- lidé MeSH
- počítačová simulace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- směrnice MeSH
The transient receptor potential channel TRPC6 is a non-selective cation channel which modulates the calcium level in eukaryotic cells (including sensory receptor cells) in response to external signals. Calmodulin (CaM) is a ubiquitously expressed Ca(2+) binding protein that is an important mediator of Ca(2+)-dependent regulation of the TRPC6 channel. One CaM binding site was identified within the C-tail of TRPC6. The aim of this study is to map in detail the CaM and inositol (1,4,5)-triphosphate receptor binding (CIRB) domain in the C-terminal region of mouse TRPC6 that is capable of interacting with CaM using in vitro binding assays. Besides the set of positively charged amino acid residues Arg852, Lys856, Arg864, Lys859/Arg860, a hydrophobic Ile857, at the position 1 in 1-5-10 motif, was located and the effect of replacing it with a neutral residue was tested using fluorescence anisotropy measurement. Participation of Ile857 could indicate a strong role of this conserved CaM binding motif.
- MeSH
- fluorescenční polarizace MeSH
- kalmodulin metabolismus MeSH
- kationtové kanály TRPC chemie genetika metabolismus MeSH
- kationtový kanál TRPC6 MeSH
- klonování DNA MeSH
- molekulární modely MeSH
- mutageneze cílená MeSH
- myši MeSH
- retardační test MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kalmodulin MeSH
- kationtové kanály TRPC MeSH
- kationtový kanál TRPC6 MeSH
- Trpc6 protein, mouse MeSH Prohlížeč
- Klíčová slova
- 5′ Fusion partner, Gene fusion, SCID-Beige mice, Survival, Targeted therapy,
- MeSH
- adenokarcinom plic diagnóza genetika MeSH
- anaplastická lymfomová kináza genetika MeSH
- fúzní onkogenní proteiny genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- membránové proteiny genetika MeSH
- myši SCID MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory plic diagnóza genetika MeSH
- proteiny nervové tkáně genetika MeSH
- proteiny vázající kalmodulin genetika MeSH
- staging nádorů MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- anaplastická lymfomová kináza MeSH
- fúzní onkogenní proteiny MeSH
- membránové proteiny MeSH
- proteiny nervové tkáně MeSH
- proteiny vázající kalmodulin MeSH
- STRN protein, human MeSH Prohlížeč
A series of four 2‑amino‑3‑cyano‑4‑(3/4‑pyridyl)‑4H‑benzo[h]chromenes 2a-d and their dichlorido(p‑cymene)ruthenium(II) complexes 3a-d were tested for antiproliferative, vascular-disruptive, anti-angiogenic and DNA-binding activity. The coordination of the 4‑pyridyl‑4H‑naphthopyrans 2 to ruthenium led to complexes with pleiotropic effects. Unlike the free ligands 2a-d, their ruthenium complexes 3a-d showed a significant affinity for DNA as demonstrated by electrophoretic mobility shift assays (EMSA) and ethidium bromide assays. Binding of 3a-d to calf thymus DNA proceeded about 10-times faster compared with cisplatin. Treatment of HT-29 colon carcinoma, 518A2 melanoma and MCF-7Topo breast cancer cells with 3a and 3b caused an accumulation of cells in the G2/M phase and an increase of the fraction of mitotic cells in the case of HT-29, due to alterations of the microtubule cytoskeleton as shown by immunofluorescence staining. Complexes 3b-c showed a dual effect on the vascular system. They suppressed angiogenesis in zebrafish embryos and they destroyed the vasculature of the chorioallantoic membrane (CAM) in fertilized chicken eggs. They also inhibited the vasculogenic mimicry, typical of U-87 glioblastoma cells in tube formation assays.
- Klíčová slova
- (Arene)ruthenium(II) complexes, DNA binding, Naphthopyran, Vascular-disrupting agents (VDA), Zebrafish,
- MeSH
- antitumorózní látky chemie farmakologie MeSH
- buňky HT-29 MeSH
- chorioalantoická membrána účinky léků MeSH
- cisplatina farmakologie MeSH
- dánio pruhované MeSH
- DNA chemie MeSH
- komplexní sloučeniny chemie MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- nádorové buněčné linie MeSH
- retardační test MeSH
- ruthenium chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antitumorózní látky MeSH
- calf thymus DNA MeSH Prohlížeč
- cisplatina MeSH
- DNA MeSH
- komplexní sloučeniny MeSH
- ruthenium MeSH