Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
21072023
PubMed Central
PMC6259458
DOI
10.3390/molecules15118122
PII: molecules15118122
Knihovny.cz E-resources
- MeSH
- Absidia drug effects MeSH
- Anti-Bacterial Agents chemical synthesis chemistry pharmacology MeSH
- Antifungal Agents chemical synthesis chemistry pharmacology MeSH
- Chloroplasts drug effects metabolism MeSH
- Phenylcarbamates chemical synthesis chemistry pharmacology MeSH
- Photosynthesis drug effects MeSH
- Herbicides chemical synthesis chemistry pharmacology MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation drug effects MeSH
- Salicylanilides chemical synthesis chemistry pharmacology MeSH
- Spinacia oleracea drug effects metabolism MeSH
- Staphylococcus aureus drug effects MeSH
- Staphylococcus epidermidis drug effects MeSH
- Electron Transport drug effects MeSH
- Trichophyton drug effects MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Antifungal Agents MeSH
- Phenylcarbamates MeSH
- Herbicides MeSH
- Salicylanilides MeSH
In this study, a series of twelve ring-substituted salicylanilides and carbamoylphenylcarbamates were prepared and characterized. The compounds were analyzed using RP-HPLC to determine lipophilicity. They were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Moreover, their site of action in the photosynthetic apparatus was determined. Primary in vitro screening of the synthesized compounds was also performed against mycobacterial, bacterial and fungal strains. Several compounds showed biological activity comparable with or higher than the standards 3-(3,4-dichlorophenyl)-1,1-dimethylurea, isoniazid, penicillin G, ciprofloxacin or fluconazole. The most active compounds showed minimal anti-proliferative activity against human cells in culture, indicating they would have low cytotoxicity. For all compounds, the relationships between lipophilicity and the chemical structure are discussed.
See more in PubMed
Vinsova J., Imramovsky A. Salicylanilides: Still a topical potential antibacterially active group. Ces. Slov. Farm. 2004;53:294–299. PubMed
De la Fuente R., Sonawane N.D., Arumainayagam D., Verkman A.S. Small molecules with antimicrobial activity against E. coli and P. aeruginosa identified by high-throughput screening. Br. J. Pharmacol. 2006;149:551–559. doi: 10.1038/sj.bjp.0706873. PubMed DOI PMC
Dahlgren M.K., Kauppi A.M., Olsson I.M., Linusson A., Elofsson M. Design, synthesis, and multivariate quantitative structure–activity relationship of salicylanilidess–potent inhibitors of type III secretion in Yersinia. J. Med. Chem. 2007;50:6177–6188. doi: 10.1021/jm070741b. PubMed DOI
Stephenson K., Yamaguchi Y., Hoch J.A. The mechanism of action of inhibitors of bacterial two-component signal transduction systems. J. Biol. Chem. 2000;275:38900–38904. doi: 10.1074/jbc.M006633200. PubMed DOI
Vinsova J., Imramovsky A., Buchta V., Ceckova M., Dolezal M., Staud F., Jampilek J., Kaustova J. Salicylanilide acetates: Synthesis and antibacterial evaluation. Molecules. 2007;12:1–12. doi: 10.3390/12010001. PubMed DOI PMC
Imramovsky A., Vinsova J., Ferriz J.M., Dolezal R., Jampilek J., Kaustova J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI
Imramovsky A., Vinsova J., Ferriz J.M., Buchta V., Jampilek J. Salicylanilide esters of N-protected amino acids as novel antimicrobial agents. Bioorg. Med. Chem. Lett. 2009;19:348–351. doi: 10.1016/j.bmcl.2008.11.080. PubMed DOI
Hassan G.S., Hegazy G.H., Safwat H.M. Synthesis of Furo-salicylanilides and their heterocyclic derivatives with anticipated molluscicidal activity. Arch. Pharm. Chem. Life Sci. 2006;339:448–455. doi: 10.1002/ardp.200600020. PubMed DOI
Daidone G., Raffa D., Plescia S., Matera M., Caruso A., Leone V., Amico-Roxas M. Synthesis and evaluation of the analgesic and antiinflammatory activities of N-substituted salicylamides. Farmaco. 1989;44:465–473. PubMed
Brown M.E., Fitzner J.N., Stevens T., Chin W., Wright C.D., Boyce J.P. Salicylanilides: Selective inhibitors of interleukin-12p40 production. Bioorg. Med. Chem. 2008;16:8760–8764. doi: 10.1016/j.bmc.2008.07.024. PubMed DOI
Liechti C., Sequin U., Bold G., Furet P., Meyer T., Traxler P. Salicylanilides as inhibitors of the protein tyrosine kinase epidermal growth factor receptor. Eur. J. Med. Chem. 2004;39:11–26. doi: 10.1016/j.ejmech.2003.09.010. PubMed DOI
Deng W., Guo Z., Guo Y., Feng Z., Jiang Y., Chu F. Acryolylamino-salicylanilides as EGFR PTK inhibitors. Bioorg. Med. Chem. Lett. 2006;16:469–472. doi: 10.1016/j.bmcl.2005.06.088. PubMed DOI
Kamath S., Buolamwini J.K. Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development. Med. Res. Rev. 2006;26:569–594. doi: 10.1002/med.20070. PubMed DOI
Ray S., Pathak S.R., Chaturvedi D. Organic carbamates in drug development. Part II: antimicrobial agents - Recent reports. Drugs Future. 2005;30:161–180. doi: 10.1358/dof.2005.030.02.869228. DOI
Ferriz J.M., Vavrova K., Kunc F., Imramovsky A., Stolarikova J., Vavrikova E., Vinsova J. Salicylanilide carbamates: Antitubercular agents active against multidrug-resistant Mycobacterium tuberculosis strains. Bioorg. Med. Chem. 2010;18:1054–1061. doi: 10.1016/j.bmc.2009.12.055. PubMed DOI
Agouridas C., Denis A., Auger J.M., Benedetti Y., Bonnefoy A., Bretin F., Chantot J.F., Dussarat A., Fromentin C., D‘Ambrieres S.G., Lachaud S., Laurin P., Le Martret O., Loyau V., Tessot N. Synthesis and antibacterial activity of ketolides (6-O-methyl-3-oxoerythromycin derivatives): A new class of antibacterials highly potent against macrolide-resistant and -susceptible respiratory pathogens. J. Med. Chem. 1998;41:4080–4100. doi: 10.1021/jm980240d. PubMed DOI
Meng Q., Luo H., Liu Y., Li W., Zhang W., Yao Q. Synthesis and evaluation of carbamate prodrugs of SQ109 as antituberculosis agents. Bioorg. Med. Chem. 2009;19:2808–2810. doi: 10.1016/j.bmcl.2009.03.091. PubMed DOI
Thorberg S., Berg S., Lundstrom L., Pettersson B., Wijkstrom A., Sanchez D., Lindberg P., Nilsson J.G. Carbamate ester derivatives as potential prodrugs of the presynaptic dopamine autoreceptor agonist (-)-3-(3-hydroxyphenyl)-N-propylpiperidine. J. Med. Chem. 1987;30:2008–2012. doi: 10.1021/jm00394a014. PubMed DOI
Good N.E. Inhibitors of the Hill reaction. Plant Physiol. 1961;36:788–803. doi: 10.1104/pp.36.6.788. PubMed DOI PMC
Kralova K., Sersen F., Cizmarik J. Inhibitory effect of piperidinoethylesters of alkoxyphenylcarbamic acids on photosynthesis. Gen. Physiol. Biophys. 1992;11:261–267. PubMed
Kralova K., Sersen F., Kubicova L., Waisser K. Inhibitory effects of substituted benzanilides on photosynthetic electron transport in spinach chloroplasts. Chem. Pap. 1999;53:328–331. doi: 10.1002/chin.200017091. DOI
Kralova K., Sersen F., Kubicova L., Waisser K. Inhibition of photosynthetic electron transport in spinach chloroplasts by 3- and 4-halogeno substituted benzanilides and thiobenzanilides. J. Trace Microprobe Technol. 2000;18:251–256.
Kubicova L., Kralova K., Sersen F., Gregor J., Waisser K. Effects of substituted salicylanilides on the photosynthetic apparatus of spinach chloroplasts. Folia Pharm. Univ. Carol. 2000;25:89–96.
Pravda M., Hrnciarova D., Kralova K. 3-Methylthiosalicylanilides – inhibitors of Hill reaction. Chem. Listy. 2003;97:1122–1123.
Black C.C. Photosynthetic phosphorylation and associated reactions in the presence of a new group of uncouplers: Salicylanilides. Biochim. Biophys. Acta. 1968;162:294–296. doi: 10.1016/0005-2728(68)90113-8. PubMed DOI
Govindjee S. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust. J. Plant Physiol. 1995;22:131–160. doi: 10.1071/PP9950131. DOI
Jegerschold C., Styring S. Fast oxygen-independent degradation of D1 reaction center protein in photosystem II. FEBS Lett. 1991;280:87–90. doi: 10.1016/0014-5793(91)80210-T. PubMed DOI
Kralova K., Kubicova L., Sersen F., Waisser K. Inhibition of Hill reaction in spinach chloroplasts by 5-bromo- and 3,5-dibromosalicylanilides; Proceedings of 51st Congress of Chemical Societies; Nitra, Slovakia. 6-9 September 1999.
Kubicova L., Kissova K., Waisser K. Inhibition of chlorophyll production in Chlorella vulgaris by substituted salicylanilides. Folia Pharm. Univ. Carol. 2000;25:67–72.
Pravda M., Sustr M., Hrnciarova D., Kubicova L., Kralova K. Proceedings of ECOpole’03, Opole, Poland, 16–18 October 2003. Society of Ecological Chemistry and Engineering; Opole, Poland: 2003. Effects of 3-methylthiosalicylanilides on chlorophyll content in freshwater alga Chlorella vulgaris; pp. 105–108.
Jampilek J., Dolezal M., Kunes J., Buchta V., Kralova K. Quinaldine derivatives: Preparation and biological activity. Med. Chem. 2005;1:591–599. doi: 10.2174/157340605774598108. PubMed DOI
Dolezal M., Palek L., Vinsova J., Buchta V., Jampilek J., Kralova K. Substituted pyrazinecarboxamides: Synthesis and biological evaluation. Molecules. 2006;11:242–256. doi: 10.3390/11040242. PubMed DOI PMC
Musiol R., Jampilek J., Kralova K., Richardson D.R., Kalinowski D., Podeszwa B., Finster J., Niedbala H., Palka A., Polanski J. Investigating biological activity spectrum for novel quinoline analogues. Bioorg. Med. Chem. 2007;15:1280–1288. doi: 10.1016/j.bmc.2006.11.020. PubMed DOI
Musiol R., Tabak D., Niedbala H., Podeszwa B., Jampilek J., Kralova K., Dohnal J., Finster J., Mencel A., Polanski J. Investigating biological activity spectrum for novel quinoline analogues 2: Hydroxyquinolinecarboxamides with photosynthesis inhibiting activity. Bioorg. Med. Chem. 2008;16:4490–4499. doi: 10.1016/j.bmc.2008.02.065. PubMed DOI
Dolezal M., Cmedlova P., Palek L., Vinsova J., Kunes J., Buchta V., Jampilek J., Kralova K. Synthesis and antimycobacterial evaluation of substituted pyrazinecarboxamides. Eur. J. Med. Chem. 2008;43:1105–1113. doi: 10.1016/j.ejmech.2007.07.013. PubMed DOI
Jampilek J., Musiol R., Pesko M., Kralova K., Vejsova M., Carroll J., Coffey A., Finster J., Tabak D., Niedbala H., Kozik V., Polanski J., Csollei J., Dohnal J. Ring-substituted 4-hydroxy-1H-quinolin-2-ones: Preparation and biological activity. Molecules. 2009;14:1145–1159. doi: 10.3390/molecules14031145. PubMed DOI PMC
Jampilek J., Musiol R., Finster J., Pesko M., Carroll J., Kralova K., Vejsova M., O’Mahony J., Coffey A., Dohnal J., Polanski J. Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules. 2009;14:4246–4265. doi: 10.3390/molecules14104246. PubMed DOI PMC
Musiol R., Jampilek J., Nycz J.E., Pesko M., Carroll J., Kralova K., Vejsova M., O’Mahony J., Coffey A., Mrozek A., Polanski J. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules. 2010;15:288–304. doi: 10.3390/molecules15010288. PubMed DOI PMC
Josuu R.M., Patel M.M. Chelation ion-exchange properties of salicylic acid-urea-formaldehyde copolymers. J. Chem. Sci. 1982;91:351–358.
Mahmoud M.E., Soliman E.M. Study of the selective extraction of iron (III) by silica-immobilized 5-Formyl-3-Arylazo-salicylic acid derivatives. Talanta. 1997;44:1063–1071. doi: 10.1016/S0039-9140(96)02194-7. PubMed DOI
Rho H.S., Baek H.S., You J.W., Kim S.J., Kim M.K., Kim D.H., Chang I.S. Biological activities of 3,5-dihydroxy-N-(4-hydroxyphenyl)benzamide: A mimic compound of trans-resveratrol. Bull. Korean Chem. Soc. 2007;28:837–839.
Althuis T.H., Hess H.J. Synthesis and identification of the major metabolites of prazosin formed in dog and rat. J. Med. Chem. 1977;20:146–149. doi: 10.1021/jm00211a031. PubMed DOI
Brown R.K., Nelson N.A. 6-Aminoindole. J. Am. Chem. Soc. 1954;76:5149–5150. doi: 10.1021/ja01649a045. DOI
Fellows I.M., Kaelin D.E., Martin S.F. Application of ring-closing metathesis to the formal total synthesis of (+)−FR900482. J. Am. Chem. Soc. 2000;122:10781–10787. doi: 10.1021/ja0013879. DOI
Hiraj K., Yano T., Matsukawa T., Ugai S., Nagato S., Hori M. Synthesis and herbicidal activity of new oxazolidinedione derivates. J. Pestic. Sci. 1999;24(2):156–169.
Kerns E.H., Li D. Drug-like Properties: Concept, Structure Design and Methods. Elsevier; San Diego, CA, USA: 2008.
Norrington F.E., Hyde R.M., Williams S.G., Wotton R. Physicochemical-activity relations in practice. 1. Rational and self-consistent data bank. J. Med. Chem. 1975;18:604–607. doi: 10.1021/jm00240a016. PubMed DOI
Svensson B., Vass I., Styring S. Sequence analysis of D1 and D2 reaction center proteins of photosystem II. Z. Naturforsch C. 1991;46c:765–776. doi: 10.1515/znc-1991-9-1008. PubMed DOI
Noren G.H., Barry B.A. The YF161D1 mutant of synechocystis 6803 exhibits an EPR signal from a light-induced photosystem II radical. Biochemistry. 1992;31:3335–3342. doi: 10.1021/bi00128a005. PubMed DOI
Hoff A.J. Application of ESR in photosynthesis. Phys. Rep. 1979;54:75–200. doi: 10.1016/0370-1573(79)90016-4. DOI
Izawa S. In: Acceptors and Donors for Chloroplast Electron Transport. San Pietro A., editor. Volume 69. Academic Press; London, UK: 1980. pp. 413–434.
Kalinowski D.S., Richardson D.R. The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol. Rev. 2005;57:547–583. doi: 10.1124/pr.57.4.2. PubMed DOI
Richardson D.R., Sharpe P.C., Lovejoy D.B., Senaratne D., Kalinowski D.S., Islam M., Bernhardt P.V. Dipyridyl thiosemicarbazone chelators with potent and selective antitumor activity form iron complexes with redox activity. J. Med. Chem. 2006;49:6510–6521. doi: 10.1021/jm0606342. PubMed DOI
Kalinowski D.S., Yu Y., Sharpe P.C., Islam M., Liao Y.T., Lovejoy D.B., Kumar N., Bernhardt P.V., Richardson D.R. Design, synthesis, and characterization of novel iron chelators: Structure−activity relationships of the 2-benzoylpyridine thiosemicarbazone series and their 3-nitrobenzoyl analogues as potent antitumor agents. J. Med. Chem. 2007;50:3716–3729. doi: 10.1021/jm070445z. PubMed DOI
Wagner G., Singer D., Weuffen W. Untersuchungen uber 2-hydroxythiobenzamide und 2-hydroxythiobenzanilide. Pharmazie. 1966;21:161–166. PubMed
Bahrami K., Khodaei M.M., Farrokhi A. H2O2/SOCl2: A useful reagent system for the conversion of thiocarbonyls to carbonyl compounds. Tetrahedron. 2009;65:7658–7661. doi: 10.1016/j.tet.2009.06.110. DOI
Masarovicova E., Kralova K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2005. pp. 617–656.
Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.
Fedke C. Biochemistry and Physiology of Herbicide Action. Springer Verlag; New York, NY, USA: 1982.
National Committee for Clinical Laboratory Standards . Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts: Approved Guideline M44-A. National Committee for Clinical Laboratory Standards; Wayne, PA, USA: 2004.
Carroll J., Douarre P., Coffey A., Buckley J., Cashman B., O’Farrell K., O’Mahony J. Optimization of a rapid viability assay for Mycobacterium avium paratuberculosis by using alamarBlue. Appl. Environ. Microbiol. 2009;75:7870–7872. doi: 10.1128/AEM.01203-09. PubMed DOI PMC
Richardson D.R., Tran E.H., Ponka P. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents. Blood. 1995;86:4295–4306. PubMed
Insight into antistaphylococcal effect of chlorinated 1-hydroxynaphthalene-2-carboxanilides
Study of Biological Activities and ADMET-Related Properties of Salicylanilide-Based Peptidomimetics
Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides
Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides
Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides
Preparation and biological properties of ring-substituted naphthalene-1-carboxanilides
Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides
Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides