• This record comes from PubMed

Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates

. 2010 Nov 10 ; 15 (11) : 8122-42. [epub] 20101110

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 21072023
PubMed Central PMC6259458
DOI 10.3390/molecules15118122
PII: molecules15118122
Knihovny.cz E-resources

In this study, a series of twelve ring-substituted salicylanilides and carbamoylphenylcarbamates were prepared and characterized. The compounds were analyzed using RP-HPLC to determine lipophilicity. They were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Moreover, their site of action in the photosynthetic apparatus was determined. Primary in vitro screening of the synthesized compounds was also performed against mycobacterial, bacterial and fungal strains. Several compounds showed biological activity comparable with or higher than the standards 3-(3,4-dichlorophenyl)-1,1-dimethylurea, isoniazid, penicillin G, ciprofloxacin or fluconazole. The most active compounds showed minimal anti-proliferative activity against human cells in culture, indicating they would have low cytotoxicity. For all compounds, the relationships between lipophilicity and the chemical structure are discussed.

See more in PubMed

Vinsova J., Imramovsky A. Salicylanilides: Still a topical potential antibacterially active group. Ces. Slov. Farm. 2004;53:294–299. PubMed

De la Fuente R., Sonawane N.D., Arumainayagam D., Verkman A.S. Small molecules with antimicrobial activity against E. coli and P. aeruginosa identified by high-throughput screening. Br. J. Pharmacol. 2006;149:551–559. doi: 10.1038/sj.bjp.0706873. PubMed DOI PMC

Dahlgren M.K., Kauppi A.M., Olsson I.M., Linusson A., Elofsson M. Design, synthesis, and multivariate quantitative structure–activity relationship of salicylanilidess–potent inhibitors of type III secretion in Yersinia. J. Med. Chem. 2007;50:6177–6188. doi: 10.1021/jm070741b. PubMed DOI

Stephenson K., Yamaguchi Y., Hoch J.A. The mechanism of action of inhibitors of bacterial two-component signal transduction systems. J. Biol. Chem. 2000;275:38900–38904. doi: 10.1074/jbc.M006633200. PubMed DOI

Vinsova J., Imramovsky A., Buchta V., Ceckova M., Dolezal M., Staud F., Jampilek J., Kaustova J. Salicylanilide acetates: Synthesis and antibacterial evaluation. Molecules. 2007;12:1–12. doi: 10.3390/12010001. PubMed DOI PMC

Imramovsky A., Vinsova J., Ferriz J.M., Dolezal R., Jampilek J., Kaustova J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI

Imramovsky A., Vinsova J., Ferriz J.M., Buchta V., Jampilek J. Salicylanilide esters of N-protected amino acids as novel antimicrobial agents. Bioorg. Med. Chem. Lett. 2009;19:348–351. doi: 10.1016/j.bmcl.2008.11.080. PubMed DOI

Hassan G.S., Hegazy G.H., Safwat H.M. Synthesis of Furo-salicylanilides and their heterocyclic derivatives with anticipated molluscicidal activity. Arch. Pharm. Chem. Life Sci. 2006;339:448–455. doi: 10.1002/ardp.200600020. PubMed DOI

Daidone G., Raffa D., Plescia S., Matera M., Caruso A., Leone V., Amico-Roxas M. Synthesis and evaluation of the analgesic and antiinflammatory activities of N-substituted salicylamides. Farmaco. 1989;44:465–473. PubMed

Brown M.E., Fitzner J.N., Stevens T., Chin W., Wright C.D., Boyce J.P. Salicylanilides: Selective inhibitors of interleukin-12p40 production. Bioorg. Med. Chem. 2008;16:8760–8764. doi: 10.1016/j.bmc.2008.07.024. PubMed DOI

Liechti C., Sequin U., Bold G., Furet P., Meyer T., Traxler P. Salicylanilides as inhibitors of the protein tyrosine kinase epidermal growth factor receptor. Eur. J. Med. Chem. 2004;39:11–26. doi: 10.1016/j.ejmech.2003.09.010. PubMed DOI

Deng W., Guo Z., Guo Y., Feng Z., Jiang Y., Chu F. Acryolylamino-salicylanilides as EGFR PTK inhibitors. Bioorg. Med. Chem. Lett. 2006;16:469–472. doi: 10.1016/j.bmcl.2005.06.088. PubMed DOI

Kamath S., Buolamwini J.K. Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development. Med. Res. Rev. 2006;26:569–594. doi: 10.1002/med.20070. PubMed DOI

Ray S., Pathak S.R., Chaturvedi D. Organic carbamates in drug development. Part II: antimicrobial agents - Recent reports. Drugs Future. 2005;30:161–180. doi: 10.1358/dof.2005.030.02.869228. DOI

Ferriz J.M., Vavrova K., Kunc F., Imramovsky A., Stolarikova J., Vavrikova E., Vinsova J. Salicylanilide carbamates: Antitubercular agents active against multidrug-resistant Mycobacterium tuberculosis strains. Bioorg. Med. Chem. 2010;18:1054–1061. doi: 10.1016/j.bmc.2009.12.055. PubMed DOI

Agouridas C., Denis A., Auger J.M., Benedetti Y., Bonnefoy A., Bretin F., Chantot J.F., Dussarat A., Fromentin C., D‘Ambrieres S.G., Lachaud S., Laurin P., Le Martret O., Loyau V., Tessot N. Synthesis and antibacterial activity of ketolides (6-O-methyl-3-oxoerythromycin derivatives): A new class of antibacterials highly potent against macrolide-resistant and -susceptible respiratory pathogens. J. Med. Chem. 1998;41:4080–4100. doi: 10.1021/jm980240d. PubMed DOI

Meng Q., Luo H., Liu Y., Li W., Zhang W., Yao Q. Synthesis and evaluation of carbamate prodrugs of SQ109 as antituberculosis agents. Bioorg. Med. Chem. 2009;19:2808–2810. doi: 10.1016/j.bmcl.2009.03.091. PubMed DOI

Thorberg S., Berg S., Lundstrom L., Pettersson B., Wijkstrom A., Sanchez D., Lindberg P., Nilsson J.G. Carbamate ester derivatives as potential prodrugs of the presynaptic dopamine autoreceptor agonist (-)-3-(3-hydroxyphenyl)-N-propylpiperidine. J. Med. Chem. 1987;30:2008–2012. doi: 10.1021/jm00394a014. PubMed DOI

Good N.E. Inhibitors of the Hill reaction. Plant Physiol. 1961;36:788–803. doi: 10.1104/pp.36.6.788. PubMed DOI PMC

Kralova K., Sersen F., Cizmarik J. Inhibitory effect of piperidinoethylesters of alkoxyphenylcarbamic acids on photosynthesis. Gen. Physiol. Biophys. 1992;11:261–267. PubMed

Kralova K., Sersen F., Kubicova L., Waisser K. Inhibitory effects of substituted benzanilides on photosynthetic electron transport in spinach chloroplasts. Chem. Pap. 1999;53:328–331. doi: 10.1002/chin.200017091. DOI

Kralova K., Sersen F., Kubicova L., Waisser K. Inhibition of photosynthetic electron transport in spinach chloroplasts by 3- and 4-halogeno substituted benzanilides and thiobenzanilides. J. Trace Microprobe Technol. 2000;18:251–256.

Kubicova L., Kralova K., Sersen F., Gregor J., Waisser K. Effects of substituted salicylanilides on the photosynthetic apparatus of spinach chloroplasts. Folia Pharm. Univ. Carol. 2000;25:89–96.

Pravda M., Hrnciarova D., Kralova K. 3-Methylthiosalicylanilides – inhibitors of Hill reaction. Chem. Listy. 2003;97:1122–1123.

Black C.C. Photosynthetic phosphorylation and associated reactions in the presence of a new group of uncouplers: Salicylanilides. Biochim. Biophys. Acta. 1968;162:294–296. doi: 10.1016/0005-2728(68)90113-8. PubMed DOI

Govindjee S. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust. J. Plant Physiol. 1995;22:131–160. doi: 10.1071/PP9950131. DOI

Jegerschold C., Styring S. Fast oxygen-independent degradation of D1 reaction center protein in photosystem II. FEBS Lett. 1991;280:87–90. doi: 10.1016/0014-5793(91)80210-T. PubMed DOI

Kralova K., Kubicova L., Sersen F., Waisser K. Inhibition of Hill reaction in spinach chloroplasts by 5-bromo- and 3,5-dibromosalicylanilides; Proceedings of 51st Congress of Chemical Societies; Nitra, Slovakia. 6-9 September 1999.

Kubicova L., Kissova K., Waisser K. Inhibition of chlorophyll production in Chlorella vulgaris by substituted salicylanilides. Folia Pharm. Univ. Carol. 2000;25:67–72.

Pravda M., Sustr M., Hrnciarova D., Kubicova L., Kralova K. Proceedings of ECOpole’03, Opole, Poland, 16–18 October 2003. Society of Ecological Chemistry and Engineering; Opole, Poland: 2003. Effects of 3-methylthiosalicylanilides on chlorophyll content in freshwater alga Chlorella vulgaris; pp. 105–108.

Jampilek J., Dolezal M., Kunes J., Buchta V., Kralova K. Quinaldine derivatives: Preparation and biological activity. Med. Chem. 2005;1:591–599. doi: 10.2174/157340605774598108. PubMed DOI

Dolezal M., Palek L., Vinsova J., Buchta V., Jampilek J., Kralova K. Substituted pyrazinecarboxamides: Synthesis and biological evaluation. Molecules. 2006;11:242–256. doi: 10.3390/11040242. PubMed DOI PMC

Musiol R., Jampilek J., Kralova K., Richardson D.R., Kalinowski D., Podeszwa B., Finster J., Niedbala H., Palka A., Polanski J. Investigating biological activity spectrum for novel quinoline analogues. Bioorg. Med. Chem. 2007;15:1280–1288. doi: 10.1016/j.bmc.2006.11.020. PubMed DOI

Musiol R., Tabak D., Niedbala H., Podeszwa B., Jampilek J., Kralova K., Dohnal J., Finster J., Mencel A., Polanski J. Investigating biological activity spectrum for novel quinoline analogues 2: Hydroxyquinolinecarboxamides with photosynthesis inhibiting activity. Bioorg. Med. Chem. 2008;16:4490–4499. doi: 10.1016/j.bmc.2008.02.065. PubMed DOI

Dolezal M., Cmedlova P., Palek L., Vinsova J., Kunes J., Buchta V., Jampilek J., Kralova K. Synthesis and antimycobacterial evaluation of substituted pyrazinecarboxamides. Eur. J. Med. Chem. 2008;43:1105–1113. doi: 10.1016/j.ejmech.2007.07.013. PubMed DOI

Jampilek J., Musiol R., Pesko M., Kralova K., Vejsova M., Carroll J., Coffey A., Finster J., Tabak D., Niedbala H., Kozik V., Polanski J., Csollei J., Dohnal J. Ring-substituted 4-hydroxy-1H-quinolin-2-ones: Preparation and biological activity. Molecules. 2009;14:1145–1159. doi: 10.3390/molecules14031145. PubMed DOI PMC

Jampilek J., Musiol R., Finster J., Pesko M., Carroll J., Kralova K., Vejsova M., O’Mahony J., Coffey A., Dohnal J., Polanski J. Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules. 2009;14:4246–4265. doi: 10.3390/molecules14104246. PubMed DOI PMC

Musiol R., Jampilek J., Nycz J.E., Pesko M., Carroll J., Kralova K., Vejsova M., O’Mahony J., Coffey A., Mrozek A., Polanski J. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules. 2010;15:288–304. doi: 10.3390/molecules15010288. PubMed DOI PMC

Josuu R.M., Patel M.M. Chelation ion-exchange properties of salicylic acid-urea-formaldehyde copolymers. J. Chem. Sci. 1982;91:351–358.

Mahmoud M.E., Soliman E.M. Study of the selective extraction of iron (III) by silica-immobilized 5-Formyl-3-Arylazo-salicylic acid derivatives. Talanta. 1997;44:1063–1071. doi: 10.1016/S0039-9140(96)02194-7. PubMed DOI

Rho H.S., Baek H.S., You J.W., Kim S.J., Kim M.K., Kim D.H., Chang I.S. Biological activities of 3,5-dihydroxy-N-(4-hydroxyphenyl)benzamide: A mimic compound of trans-resveratrol. Bull. Korean Chem. Soc. 2007;28:837–839.

Althuis T.H., Hess H.J. Synthesis and identification of the major metabolites of prazosin formed in dog and rat. J. Med. Chem. 1977;20:146–149. doi: 10.1021/jm00211a031. PubMed DOI

Brown R.K., Nelson N.A. 6-Aminoindole. J. Am. Chem. Soc. 1954;76:5149–5150. doi: 10.1021/ja01649a045. DOI

Fellows I.M., Kaelin D.E., Martin S.F. Application of ring-closing metathesis to the formal total synthesis of (+)−FR900482. J. Am. Chem. Soc. 2000;122:10781–10787. doi: 10.1021/ja0013879. DOI

Hiraj K., Yano T., Matsukawa T., Ugai S., Nagato S., Hori M. Synthesis and herbicidal activity of new oxazolidinedione derivates. J. Pestic. Sci. 1999;24(2):156–169.

Kerns E.H., Li D. Drug-like Properties: Concept, Structure Design and Methods. Elsevier; San Diego, CA, USA: 2008.

Norrington F.E., Hyde R.M., Williams S.G., Wotton R. Physicochemical-activity relations in practice. 1. Rational and self-consistent data bank. J. Med. Chem. 1975;18:604–607. doi: 10.1021/jm00240a016. PubMed DOI

Svensson B., Vass I., Styring S. Sequence analysis of D1 and D2 reaction center proteins of photosystem II. Z. Naturforsch C. 1991;46c:765–776. doi: 10.1515/znc-1991-9-1008. PubMed DOI

Noren G.H., Barry B.A. The YF161D1 mutant of synechocystis 6803 exhibits an EPR signal from a light-induced photosystem II radical. Biochemistry. 1992;31:3335–3342. doi: 10.1021/bi00128a005. PubMed DOI

Hoff A.J. Application of ESR in photosynthesis. Phys. Rep. 1979;54:75–200. doi: 10.1016/0370-1573(79)90016-4. DOI

Izawa S. In: Acceptors and Donors for Chloroplast Electron Transport. San Pietro A., editor. Volume 69. Academic Press; London, UK: 1980. pp. 413–434.

Kalinowski D.S., Richardson D.R. The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol. Rev. 2005;57:547–583. doi: 10.1124/pr.57.4.2. PubMed DOI

Richardson D.R., Sharpe P.C., Lovejoy D.B., Senaratne D., Kalinowski D.S., Islam M., Bernhardt P.V. Dipyridyl thiosemicarbazone chelators with potent and selective antitumor activity form iron complexes with redox activity. J. Med. Chem. 2006;49:6510–6521. doi: 10.1021/jm0606342. PubMed DOI

Kalinowski D.S., Yu Y., Sharpe P.C., Islam M., Liao Y.T., Lovejoy D.B., Kumar N., Bernhardt P.V., Richardson D.R. Design, synthesis, and characterization of novel iron chelators: Structure−activity relationships of the 2-benzoylpyridine thiosemicarbazone series and their 3-nitrobenzoyl analogues as potent antitumor agents. J. Med. Chem. 2007;50:3716–3729. doi: 10.1021/jm070445z. PubMed DOI

Wagner G., Singer D., Weuffen W. Untersuchungen uber 2-hydroxythiobenzamide und 2-hydroxythiobenzanilide. Pharmazie. 1966;21:161–166. PubMed

Bahrami K., Khodaei M.M., Farrokhi A. H2O2/SOCl2: A useful reagent system for the conversion of thiocarbonyls to carbonyl compounds. Tetrahedron. 2009;65:7658–7661. doi: 10.1016/j.tet.2009.06.110. DOI

Masarovicova E., Kralova K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2005. pp. 617–656.

Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.

Fedke C. Biochemistry and Physiology of Herbicide Action. Springer Verlag; New York, NY, USA: 1982.

National Committee for Clinical Laboratory Standards . Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts: Approved Guideline M44-A. National Committee for Clinical Laboratory Standards; Wayne, PA, USA: 2004.

Carroll J., Douarre P., Coffey A., Buckley J., Cashman B., O’Farrell K., O’Mahony J. Optimization of a rapid viability assay for Mycobacterium avium paratuberculosis by using alamarBlue. Appl. Environ. Microbiol. 2009;75:7870–7872. doi: 10.1128/AEM.01203-09. PubMed DOI PMC

Richardson D.R., Tran E.H., Ponka P. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents. Blood. 1995;86:4295–4306. PubMed

Newest 20 citations...

See more in
Medvik | PubMed

Insight into antistaphylococcal effect of chlorinated 1-hydroxynaphthalene-2-carboxanilides

. 2025 ; 13 (2) : 2684. [epub] 20250326

Antimicrobial and ADME properties of methoxylated, methylated and nitrated 2-hydroxynaphthalene-1 carboxanilides

. 2025 ; 13 (1) : 2642. [epub] 20250208

Critical view on antimicrobial, antibiofilm and cytotoxic activities of quinazolin-4(3H)-one derived schiff bases and their Cu(II) complexes

. 2024 Apr 15 ; 10 (7) : e29051. [epub] 20240402

Study of Biological Activities and ADMET-Related Properties of Salicylanilide-Based Peptidomimetics

. 2022 Oct 01 ; 23 (19) : . [epub] 20221001

Antistaphylococcal Activities and ADME-Related Properties of Chlorinated Arylcarbamoylnaphthalenylcarbamates

. 2022 Jun 05 ; 15 (6) : . [epub] 20220605

Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides

. 2022 Mar 15 ; 23 (6) : . [epub] 20220315

SAR-mediated Similarity Assessment of the Property Profile for New, Silicon-Based AChE/BChE Inhibitors

. 2019 Oct 29 ; 20 (21) : . [epub] 20191029

Bioactivity of Methoxylated and Methylated 1-Hydroxynaphthalene-2-Carboxanilides: Comparative Molecular Surface Analysis

. 2019 Aug 18 ; 24 (16) : . [epub] 20190818

Design and synthesis of anticancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action

. 2019 Apr 23 ; 9 (1) : 6387. [epub] 20190423

Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides

. 2018 Aug 07 ; 19 (8) : . [epub] 20180807

Halogenated 1-Hydroxynaphthalene-2-Carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II

. 2017 Oct 12 ; 22 (10) : . [epub] 20171012

Photosynthesis-Inhibiting Activity of 1-[(2-Chlorophenyl)carbamoyl]- and 1-[(2-Nitrophenyl)carbamoyl]naphthalen-2-yl Alkylcarbamates

. 2017 Jul 17 ; 22 (7) : . [epub] 20170717

Synthesis and Antimicrobial Evaluation of 1-[(2-Substituted phenyl)carbamoyl]naphthalen-2-yl Carbamates

. 2016 Sep 07 ; 21 (9) : . [epub] 20160907

Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides

. 2015 May 27 ; 20 (6) : 9767-87. [epub] 20150527

Synthesis and antimycobacterial and photosynthesis-inhibiting evaluation of 2-[(E)-2-substituted-ethenyl]-1,3-benzoxazoles

. 2014 ; 2014 () : 705973. [epub] 20140813

Preparation and biological properties of ring-substituted naphthalene-1-carboxanilides

. 2014 Jul 17 ; 19 (7) : 10386-409. [epub] 20140717

Synthesis and biological evaluation of 2-hydroxy-3-[(2-aryloxyethyl)amino]propyl 4-[(alkoxycarbonyl)amino]benzoates

. 2013 ; 2013 () : 274570. [epub] 20131029

Antimycobacterial and photosynthetic electron transport inhibiting activity of ring-substituted 4-arylamino-7-chloroquinolinium chlorides

. 2013 Sep 02 ; 18 (9) : 10648-70. [epub] 20130902

Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides

. 2013 Aug 06 ; 18 (8) : 9397-419. [epub] 20130806

Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides

. 2013 Jul 08 ; 18 (7) : 7977-97. [epub] 20130708

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...