N-Terminal Presequence-Independent Import of Phosphofructokinase into Hydrogenosomes of Trichomonas vaginalis
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26475173
PubMed Central
PMC4664869
DOI
10.1128/ec.00104-15
PII: EC.00104-15
Knihovny.cz E-resources
- MeSH
- Adenosine Triphosphate pharmacology MeSH
- Diphosphates metabolism MeSH
- Ferredoxins metabolism MeSH
- Phosphofructokinases chemistry metabolism MeSH
- Phylogeny MeSH
- Mitochondria drug effects metabolism MeSH
- Molecular Sequence Data MeSH
- Organelles drug effects metabolism MeSH
- Promoter Regions, Genetic genetics MeSH
- Saccharomyces cerevisiae drug effects metabolism MeSH
- Amino Acid Sequence MeSH
- Sequence Alignment MeSH
- Protein Transport drug effects MeSH
- Trichomonas vaginalis drug effects enzymology MeSH
- Hydrogen metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine Triphosphate MeSH
- Diphosphates MeSH
- Ferredoxins MeSH
- Phosphofructokinases MeSH
- Hydrogen MeSH
Mitochondrial evolution entailed the origin of protein import machinery that allows nuclear-encoded proteins to be targeted to the organelle, as well as the origin of cleavable N-terminal targeting sequences (NTS) that allow efficient sorting and import of matrix proteins. In hydrogenosomes and mitosomes, reduced forms of mitochondria with reduced proteomes, NTS-independent targeting of matrix proteins is known. Here, we studied the cellular localization of two glycolytic enzymes in the anaerobic pathogen Trichomonas vaginalis: PPi-dependent phosphofructokinase (TvPPi-PFK), which is the main glycolytic PFK activity of the protist, and ATP-dependent PFK (TvATP-PFK), the function of which is less clear. TvPPi-PFK was detected predominantly in the cytosol, as expected, while all four TvATP-PFK paralogues were imported into T. vaginalis hydrogenosomes, although none of them possesses an NTS. The heterologous expression of TvATP-PFK in Saccharomyces cerevisiae revealed an intrinsic capability of the protein to be recognized and imported into yeast mitochondria, whereas yeast ATP-PFK resides in the cytosol. TvATP-PFK consists of only a catalytic domain, similarly to "short" bacterial enzymes, while ScATP-PFK includes an N-terminal extension, a catalytic domain, and a C-terminal regulatory domain. Expression of the catalytic domain of ScATP-PFK and short Escherichia coli ATP-PFK in T. vaginalis resulted in their partial delivery to hydrogenosomes. These results indicate that TvATP-PFK and the homologous ATP-PFKs possess internal structural targeting information that is recognized by the hydrogenosomal import machinery. From an evolutionary perspective, the predisposition of ancient ATP-PFK to be recognized and imported into hydrogenosomes might be a relict from the early phases of organelle evolution.
Department of Parasitology Charles University Prague Faculty of Science Prague Czech Republic
Institute for Molecular Evolution Heinrich Heine University Düsseldorf Düsseldorf Germany
See more in PubMed
Lane N, Martin W. 2010. The energetics of genome complexity. Nature 467:929–934. doi:10.1038/nature09486. PubMed DOI
Hannaert V, Brinkmann H, Nowitzki U, Lee JA, Albert MA, Sensen CW, Gaasterland T, Muller M, Michels P, Martin W. 2000. Enolase from Trypanosoma brucei, from the amitochondriate protist Mastigamoeba balamuthi, and from the chloroplast and cytosol of Euglena gracilis: pieces in the evolutionary puzzle of the eukaryotic glycolytic pathway. Mol Biol Evol 17:989–1000. doi:10.1093/oxfordjournals.molbev.a026395. PubMed DOI
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG, Martin WF. 2012. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76:444–495. doi:10.1128/MMBR.05024-11. PubMed DOI PMC
Embley TM, Martin W. 2006. Eukaryotic evolution, changes and challenges. Nature 440:623–630. doi:10.1038/nature04546. PubMed DOI
Gualdron-Lopez M, Brennand A, Hannaert V, Quinones W, Caceres AJ, Bringaud F, Concepcion JL, Michels PA. 2012. When, how and why glycolysis became compartmentalised in the Kinetoplastea. A new look at an ancient organelle. Int J Parasitol 42:1–20. doi:10.1016/j.ijpara.2011.10.007. PubMed DOI
Schnarrenberger C, Pelzer-Reith B, Yatsuki H, Freund S, Jacobshagen S, Hori K. 1994. Expression and sequence of the only detectable aldolase in Chlamydomonas reinhardtii. Arch Biochem Biophys 313:173–178. doi:10.1006/abbi.1994.1374. PubMed DOI
Johnson X, Alric J. 2013. Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12:776–793. doi:10.1128/EC.00318-12. PubMed DOI PMC
Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, Stanley MS, Kaplan A, Caron L, Weber T, Maheswari U, Armbrust EV, Bowler C. 2008. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3:e1426. doi:10.1371/journal.pone.0001426. PubMed DOI PMC
Nakayama T, Ishida K, Archibald JM. 2012. Broad distribution of TPI-GAPDH fusion proteins among eukaryotes: evidence for glycolytic reactions in the mitochondrion? PLoS One 7:e52340. doi:10.1371/journal.pone.0052340. PubMed DOI PMC
Mertens E, Ladror US, Lee JA, Miretsky A, Morris A, Rozario C, Kemp RG, Müller M. 1998. The pyrophosphate-dependent phosphofructokinase of the protist, Trichomonas vaginalis, and the evolutionary relationships of protist phosphofructokinases. J Mol Evol 47:739–750. doi:10.1007/PL00006433. PubMed DOI
Winkler C, Delvos B, Martin W, Henze K. 2007. Purification, microsequencing and cloning of spinach ATP-dependent phosphofructokinase link sequence and function for the plant enzyme. FEBS J 274:429–438. doi:10.1111/j.1742-4658.2006.05590.x. PubMed DOI
Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UC, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de PY, Miranda-Saavedra D, Barton GJ, Westrop GD, Muller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, Okumura CY, Schneider R, Smith AJ, Vanacova S, Villalvazo M, Haas BJ, Pertea M, Feldblyum TV, Utterback TR, Shu CL, Osoegawa K, de Jong PJ, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik SB, Logsdon JM Jr, Henze K, Gupta A, Wang CC, Dunne RL, Upcroft JA, Upcroft P, White O, Salzberg SL, Tang P, Chiu CH, Lee YS, Embley TM, Coombs GH, Mottram JC, Tachezy J, Fraser-Liggett CM, Johnson PJ. 2007. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212. doi:10.1126/science.1132894. PubMed DOI PMC
Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, Loo JA, Johnson PJ. 2011. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol 41:1421–1434. doi:10.1016/j.ijpara.2011.10.001. PubMed DOI PMC
Henze K. 2007. The proteome of T. vaginalis hydrogenosomes, p 163–178. In Tachezy J. (ed), Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, Berlin, Germany.
Rada P, Dolezal P, Jedelsky PL, Bursac D, Perry AJ, Sedinova M, Smiskova K, Novotny M, Beltran NC, Hrdy I, Lithgow T, Tachezy J. 2011. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS One 6:e24428. doi:10.1371/journal.pone.0024428. PubMed DOI PMC
Liapounova NA, Hampl V, Gordon PM, Sensen CW, Gedamu L, Dacks JB. 2006. Reconstructing the mosaic glycolytic pathway of the anaerobic eukaryote Monocercomonoides. Eukaryot Cell 5:2138–2146. doi:10.1128/EC.00258-06. PubMed DOI PMC
Bapteste E, Moreira D, Philippe H. 2003. Rampant horizontal gene transfer and phospho-donor change in the evolution of the phosphofructokinase. Gene 318:185–191. doi:10.1016/S0378-1119(03)00797-2. PubMed DOI
Shirakihara Y, Evans PR. 1988. Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. J Mol Biol 204:973–994. doi:10.1016/0022-2836(88)90056-3. PubMed DOI
Poorman RA, Randolph A, Kemp RG, Heinrikson RL. 1984. Evolution of phosphofructokinase: gene duplication and creation of new effector sites. Nature 309:467–469. doi:10.1038/309467a0. PubMed DOI
Mony BM, Mehta M, Jarori GK, Sharma S. 2009. Plant-like phosphofructokinase from Plasmodium falciparum belongs to a novel class of ATP-dependent enzymes. Int J Parasitol 39:1441–1453. doi:10.1016/j.ijpara.2009.05.011. PubMed DOI
Vogtle FN, Wortelkamp S, Zahedi RP, Becker D, Leidhold C, Gevaert K, Kellermann J, Voos W, Sickmann A, Pfanner N, Meisinger C. 2009. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139:428–439. doi:10.1016/j.cell.2009.07.045. PubMed DOI
Gakh O, Cavadini P, Isaya G. 2002. Mitochondrial processing peptidases. Biochim Biophys Acta 1592:63–77. doi:10.1016/S0167-4889(02)00265-3. PubMed DOI
Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. 2009. Importing mitochondrial proteins: machineries and mechanisms. Cell 138:628–644. doi:10.1016/j.cell.2009.08.005. PubMed DOI PMC
Bradley PJ, Lahti CJ, Plumper E, Johnson PJ. 1997. Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J 16:3484–3493. doi:10.1093/emboj/16.12.3484. PubMed DOI PMC
Dolezal P, Smid O, Rada P, Zubacova Z, Bursac D, Sutak R, Nebesarova J, Lithgow T, Tachezy J. 2005. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A 102:10924–10929. doi:10.1073/pnas.0500349102. PubMed DOI PMC
Zimorski V, Major P, Hoffmann K, Bras XP, Martin WF, Gould SB. 2013. The N-terminal sequences of four major hydrogenosomal proteins are not essential for import into hydrogenosomes of Trichomonas vaginalis. J Eukaryot Microbiol 60:89–97. doi:10.1111/jeu.12012. PubMed DOI
Mentel M, Zimorski V, Haferkamp P, Martin W, Henze K. 2008. Protein import into hydrogenosomes of Trichomonas vaginalis involves both N-terminal and internal targeting signals: a case study of thioredoxin reductases. Eukaryot Cell 7:1750–1757. doi:10.1128/EC.00206-08. PubMed DOI PMC
Katoh K, Kuma K, Toh H, Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518. doi:10.1093/nar/gki198. PubMed DOI PMC
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98.
Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:10.1093/bioinformatics/btl446. PubMed DOI
Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57:758–771. doi:10.1080/10635150802429642. PubMed DOI
Lartillot N, Rodrigue N, Stubbs D, Richer J. 2013. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol 62:611–615. doi:10.1093/sysbio/syt022. PubMed DOI
Hrdy I, Hirt RP, Dolezal P, Bardonova L, Foster PG, Tachezy J, Embley TM. 2004. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618–622. doi:10.1038/nature03149. PubMed DOI
Niedenthal RK, Riles L, Johnston M, Hegemann JH. 1996. Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12:773–786. PubMed
Sutak R, Dolezal P, Fiumera HL, Hrdy I, Dancis A, Delgadillo-Correa MG, Johnson PJ, Müller M, Tachezy J. 2004. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci U S A 101:10368–10373. doi:10.1073/pnas.0401319101. PubMed DOI PMC
Drmota T, Proost P, Van Ranst M, Weyda F, Kulda J, Tachezy J. 1996. Iron-ascorbate cleavable malic enzyme from hydrogenosomes of Trichomonas vaginalis: purification and characterization. Mol Biochem Parasitol 83:221–234. doi:10.1016/S0166-6851(96)02777-6. PubMed DOI
Chi AS, Deng Z, Albach RA, Kemp RG. 2001. The two phosphofructokinase gene products of Entamoeba histolytica. J Biol Chem 276:19974–19981. doi:10.1074/jbc.M011584200. PubMed DOI
Mertens E, Van Schaftingen E, Müller M. 1989. Presence of a fructose-2,6-bisphosphate-insensitive pyrophosphate: fructose-6-phosphate phosphotransferase in the anaerobic protozoa Tritrichomonas foetus, Trichomonas vaginalis and Isotricha prostoma. Mol Biochem Parasitol 37:183–190. doi:10.1016/0166-6851(89)90150-3. PubMed DOI
Gregg C, Kyryakov P, Titorenko VI. 2009. Purification of mitochondria from yeast cells. J Vis Exp 30:1417. doi:10.3791/1417. PubMed DOI PMC
Michels PA, Chevalier N, Opperdoes FR, Rider MH, Rigden DJ. 1997. The glycosomal ATP-dependent phosphofructokinase of Trypanosoma brucei must have evolved from an ancestral pyrophosphate-dependent enzyme. Eur J Biochem 250:698–704. doi:10.1111/j.1432-1033.1997.00698.x. PubMed DOI
Mustroph A, Sonnewald U, Biemelt S. 2007. Characterisation of the ATP-dependent phosphofructokinase gene family from Arabidopsis thaliana. FEBS Lett 581:2401–2410. doi:10.1016/j.febslet.2007.04.060. PubMed DOI
Delgadillo MG, Liston DR, Niazi K, Johnson PJ. 1997. Transient and selectable transformation of the parasitic protist Trichomonas vaginalis. Proc Natl Acad Sci U S A 94:4716–4720. doi:10.1073/pnas.94.9.4716. PubMed DOI PMC
Gerber J, Neumann K, Prohl C, Muhlenhoff U, Lill R. 2004. The yeast scaffold proteins Isu1p and Isu2p are required inside mitochondria for maturation of cytosolic Fe/S proteins. Mol Cell Biol 24:4848–4857. doi:10.1128/MCB.24.11.4848-4857.2004. PubMed DOI PMC
Smid O, Matuskova A, Harris SR, Kucera T, Novotny M, Horvathova L, Hrdy I, Kutejova E, Hirt RP, Embley TM, Janata J, Tachezy J. 2008. Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog 4:e1000243. doi:10.1371/journal.ppat.1000243. PubMed DOI PMC
Burstein D, Gould SB, Zimorski V, Kloesges T, Kiosse F, Major P, Martin WF, Pupko T, Dagan T. 2012. A machine learning approach to identify hydrogenosomal proteins in Trichomonas vaginalis. Eukaryot Cell 11:217–228. doi:10.1128/EC.05225-11. PubMed DOI PMC
Alves AM, Euverink GJ, Santos H, Dijkhuizen L. 2001. Different physiological roles of ATP- and PP(i)-dependent phosphofructokinase isoenzymes in the methylotrophic actinomycete Amycolatopsis methanolica. J Bacteriol 183:7231–7240. doi:10.1128/JB.183.24.7231-7240.2001. PubMed DOI PMC
Plaxton WC, Tran HT. 2011. Metabolic adaptations of phosphate-starved plants. Plant Physiol 156:1006–1015. doi:10.1104/pp.111.175281. PubMed DOI PMC
Treberg JR, MacCormack TJ, Lewis JM, Almeida-Val VM, Val AL, Driedzic WR. 2007. Intracellular glucose and binding of hexokinase and phosphofructokinase to particulate fractions increase under hypoxia in heart of the Amazonian armored catfish (Liposarcus pardalis). Physiol Biochem Zool 80:542–550. doi:10.1086/520129. PubMed DOI
Graham JW, Williams TC, Morgan M, Fernie AR, Ratcliffe RG, Sweetlove LJ. 2007. Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling. Plant Cell 19:3723–3738. doi:10.1105/tpc.107.053371. PubMed DOI PMC
Markos A, Miretsky A, Müller M. 1993. A glyceraldehyde-3-phosphate dehydrogenase with eubacterial features in the amitochondriate eukaryote, Trichomonas vaginalis. J Mol Evol 37:631–643. doi:10.1007/BF00182749. PubMed DOI
Opperdoes FR, Borst P. 1977. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett 80:360–364. doi:10.1016/0014-5793(77)80476-6. PubMed DOI
Plaxton WC. 1996. The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol 47:185–214. doi:10.1146/annurev.arplant.47.1.185. PubMed DOI
Gancedo C, Flores CL, Gancedo JM. 2014. Evolution of moonlighting proteins: insight from yeasts. Biochem Soc Trans 42:1715–1719. doi:10.1042/BST20140199. PubMed DOI
Commichau FM, Rothe FM, Herzberg C, Wagner E, Hellwig D, Lehnik-Habrink M, Hammer E, Volker U, Stulke J. 2009. Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing. Mol Cell Proteomics 8:1350–1360. doi:10.1074/mcp.M800546-MCP200. PubMed DOI PMC
Kinnby B, Booth NA, Svensater G. 2008. Plasminogen binding by oral streptococci from dental plaque and inflammatory lesions. Microbiology 154:924–931. doi:10.1099/mic.0.2007/013235-0. PubMed DOI
Katakura Y, Sano R, Hashimoto T, Ninomiya K, Shioya S. 2010. Lactic acid bacteria display on the cell surface cytosolic proteins that recognize yeast mannan. Appl Microbiol Biotechnol 86:319–326. doi:10.1007/s00253-009-2295-y. PubMed DOI
Lucattini R, Likic VA, Lithgow T. 2004. Bacterial proteins predisposed for targeting to mitochondria. Mol Biol Evol 21:652–658. doi:10.1093/molbev/msh058. PubMed DOI
Garg S, Stolting J, Zimorski V, Rada P, Tachezy J, Martin WF, Gould SB. 2015. Conservation of transit peptide-independent protein import into the mitochondrial and hydrogenosomal matrix. Genome Biol Evol 7:2716–2726. doi:10.1093/gbe/evv175. PubMed DOI PMC
A hybrid TIM complex mediates protein import into hydrogenosomes of Trichomonas vaginalis
Evidence for an Independent Hydrogenosome-to-Mitosome Transition in the CL3 Lineage of Fornicates
Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis
Fe-S cluster assembly in the supergroup Excavata
Dynamic secretome of Trichomonas vaginalis: Case study of β-amylases