• This record comes from PubMed

Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling

. 2018 Sep 01 ; 29 (7) : 667-714. [epub] 20180314

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

SIGNIFICANCE: Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Δp dissipation decreases superoxide formation dependent on Δp. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. CRITICAL ISSUES: A wide range of UCP antioxidant effects and participations in redox signaling have been reported; however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. FUTURE DIRECTIONS: Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated. Antioxid. Redox Signal. 29, 667-714.

See more in PubMed

Abrahams JP, Leslie AGW, Lutter R, and Walker JE. Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria. Nature 370: 621–628, 1994 PubMed

Adams AE, Carroll AM, Fallon PG, and Porter RK. Mitochondrial uncoupling protein 1 expression in thymocytes. Biochim Biophys Acta 1777: 772–776, 2008 PubMed

Adams AE, Hanrahan O, Nolan DN, Voorheis HP, Fallon P, and Porter RK. Images of mitochondrial UCP 1 in mouse thymocytes using confocal microscopy. Biochim Biophys Acta 1777: 115–117, 2008 PubMed

Adams AE, Kelly OM, and Porter RK. Absence of mitochondrial uncoupling protein 1 affects apoptosis in thymocytes, thymocyte/T-cell profile and peripheral T-cell number. Biochim Biophys Acta 1797: 807–816, 2010 PubMed

Affourtit C. and Brand MD. Uncoupling protein-2 contributes significantly to high mitochondrial proton leak in INS-1E insulinoma cells and attenuates glucose-stimulated insulin secretion. Biochem J 409: 199–204, 2008 PubMed

Affourtit C, Jastroch M, and Brand MD. Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species. Free Radic Biol Med 50: 609–616, 2011 PubMed PMC

Aguer C, Piccolo BD, Fiehn O, Adams SH, and Harper ME. A novel amino acid and metabolomics signature in mice overexpressing muscle uncoupling protein 3. FASEB J 31: 814–827, 2017 PubMed PMC

Alán L, Smolková K, Kronusová E, Šantorová J, and Ježek P. Absolute levels of transcripts for mitochondrial uncoupling proteins UCP2, UCP3, UCP4, and UCP5 show different patterns in rat and mice tissues. J Bioenerg Biomembr 41: 71–78, 2009 PubMed

Allister EM, Robson-Doucette CA, Prentice KJ, Hardy AB, Sultan S, Gaisano HY, Kong D, Gilon P, Herrera PL, Lowell BB, and Wheeler MB. UCP2 regulates the glucagon response to fasting and starvation. Diabetes 62: 1623–1633, 2013 PubMed PMC

Amat R, Solanes G, Giralt M, and Villarroya F. SIRT1 is involved in glucocorticoid-mediated control of uncoupling protein-3 gene transcription. J Biol Chem 282: 34066–34076, 2007 PubMed

Andrews ZB. Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease. J Neurosci 25: 184–191, 2005 PubMed PMC

Andrews ZB. Uncoupling protein-2 and the potential link between metabolism and longevity. Curr Aging Sci 3: 102–112, 2010 PubMed

Andrews ZB, Liu ZW, Walllingford N, Erion DM, Borok E, Friedman JM, Tschöp MH, Shanabrough M, Cline G, Shulman GI, Coppola A, Gao XB, Horvath TL, and Diano S. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature 454: 846–851, 2008 PubMed PMC

Aon MA, Cortassa S, Marbán E, and O'Rourke B. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 278: 44735–44744, 2003 PubMed

Aon MA, Cortassa S, and O'Rourke B. Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta 1797: 865–877, 2010 PubMed PMC

Aquila H, Link TA, and Klingenberg M. The uncoupling protein from brown fat mitochondria is related to the mitochondrial ADP/ATP carrier. Analysis of sequence homologies and of folding of the protein in the membrane. EMBO J 4: 2369–2376, 1985 PubMed PMC

Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves-Guerra MC, Goubern M, Surwit R, Bouillaud F, Richard D, Collins S, and Ricquier D. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet 26: 435–439, 2000 PubMed

Ayyasamy V, Owens KM, Desouki MM, Liang P, Bakin A, Thangaraj K, Buchsbaum DJ, LoBuglio AF, and Singh KK. Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin. PLoS One 6: e24792, 2011 PubMed PMC

Azzu V, Affourtit C, Breen EP, Parker N, and Brand MD. Dynamic regulation of uncoupling protein 2 content in INS-1E insulinoma cells. Biochim Biophys Acta 1777: 1378–1383, 2008 PubMed PMC

Azzu V. and Brand MD. The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem Sci 35: 298–307, 2010 PubMed PMC

Baffy G, Derdak Z, and Robson SC. Mitochondrial recoupling: a novel therapeutic strategy for cancer? Br J Cancer 105: 469–474, 2011 PubMed PMC

Bai Y, Onuma H, Bai X, Medvedev AV, Misukonis M, Weinberg JB, Cao W, Robidoux J, Floering LM, Daniel KW, and Collins S. Persistent nuclear factor-κB activation in Ucp2−/− mice leads to enhanced nitric oxide and inflammatory cytokine production. J Biol Chem 280: 19062–19069, 2005 PubMed PMC

Ball KA, Nelson AW, Foster DG, and Poyton RO. Nitric oxide produced by cytochrome c oxidase helps stabilize HIF-1α in hypoxic mammalian cells. Biochem Biophys Res Commun 420: 727–732, 2012 PubMed PMC

Barlow J, Hirschberg Jensen V, Jastroch M, and Affourtit C. Palmitate-induced impairment of glucose-stimulated insulin secretion precedes mitochondrial dysfunction in mouse pancreatic islets. Biochem J 473: 487–496, 2016 PubMed

Barnstable CJ, Reddy R, Li H, and Horvath TL. Mitochondrial uncoupling protein 2 (UCP2) regulates retinal ganglion cell number and survival. J Mol Neurosci 58: 461–469, 2016 PubMed PMC

Basu Ball W, Kar S, Mukherjee M, Chande AG, Mukhopadhyaya R, and Das PK. Uncoupling protein 2 negatively regulates mitochondrial reactive oxygen species generation and induces phosphatase-mediated anti-inflammatory response in experimental visceral leishmaniasis. J Immunol 187: 1322–1332, 2011 PubMed

Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, and Mootha VK. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476: 341–345, 2011 PubMed PMC

Beck V, Jabůrek M, Breen EP, Porter RK, Ježek P, and Pohl EE. A new automated technique for the reconstitution of hydrophobic proteins into planar bilayer membranes. Studies of human recombinant uncoupling protein 1. Biochim Biophys Acta 1757: 474–479, 2006 PubMed

Beck V, Jabůrek M, Demina T, Rupprecht A, Porter RK, Ježek P, and Pohl EE. Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers. FASEB J 21: 1137–1144, 2007 PubMed

Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GRS, and Chandel NS. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol 177: 1029–1036, 2007 PubMed PMC

Berardi MJ. and Chou JJ. Fatty acid flippase activity of UCP2 is essential for its proton transport in mitochondria. Cell Metab 20: 541–552, 2014 PubMed PMC

Berardi MJ, Shih WM, Harrison SC, and Chou JJ. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476: 109–113, 2011 PubMed PMC

Bertolotti M, Farinelli G, Galli M, Aiuti A, and Sitia R. AQP8 transports NOX2-generated H2O2 across the plasma membrane to promote signaling in B cells. J Leukoc Biol 100: 1071–1079, 2016 PubMed

Blanc J, Alves-Guerra MC, Esposito B, Rousset S, Gourdy P, Ricquier D, Tedgui A, Miroux B, and Mallat Z. Protective role of uncoupling protein 2 in atherosclerosis. Circulation 107: 388–390, 2003 PubMed

Bleier L. and Dröse S. Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim Biophys Acta 1827: 1320–1331, 2013 PubMed

Board M, Lopez C, van den Bos C, Callaghan R, Clarke K, and Carr C. Acetoacetate is a more efficient energy-yielding substrate for human mesenchymal stem cells than glucose and generates fewer reactive oxygen species. Int J Biochem Cell Biol 88: 75–83, 2017 PubMed PMC

Bondarenko AI, Parichatikanond W, Madreiter CT, Rost R, Waldeck-Weiermair M, Malli R, and Graier WF. UCP2 modulates single-channel properties of a MCU-dependent Ca2+ inward current in mitochondria. Pflugers Arch Eur J Physiol 467: 2509–2518, 2015 PubMed PMC

Borecký J, Ježek P, and Siemen D. 108-pS channel in brown fat mitochondria might be identical to the inner membrane anion channel. J Biol Chem 272: 19282–19289, 1997 PubMed

Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J, Muzzin P, and Giacobino JP. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 408: 39–42, 1997 PubMed

Boudina S, Sena S, O'Neill BT, Tathireddy P, Young ME, and Abel ED. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112: 2686–2695, 2005 PubMed

Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Xia XH, Aziz S, Johnson JI, Bugger H, Zaha VG, and Abel ED. Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56: 2457–2466, 2007 PubMed

Bouillaud F, Alves-Guerra MC, and Ricquier D. UCPs, at the interface between bioenergetics and metabolism. Biochim Biophys Acta 1863: 2443–2464, 2016 PubMed

Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100: 14–31, 2016 PubMed

Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol 45: 466–472, 2010 PubMed PMC

Brand MD. and Esteves TC. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2: 85–93, 2005 PubMed

Brandi J, Cecconi D, Cordani M, Torrens-Mas M, Pacchiana R, Dalla Pozza E, Butera G, Manfredi M, Marengo E, Oliver J, Roca P, Dando I, and Donadelli M. The antioxidant uncoupling protein 2 stimulates hnRNPA2/B1, GLUT1 and PKM2 expression and sensitizes pancreas cancer cells to glycolysis inhibition. Free Radic Biol Med 101: 305–316, 2016 PubMed

Breckwoldt MO, Pfister FMJ, Bradley PM, Marinković P, Williams PR, Brill MS, Plomer B, Schmalz A, St Clair DK, Naumann R, Griesbeck O, Schwarzländer M, Godinho L, Bareyre FM, Dick TP, Kerschensteiner M, and Misgeld T. Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nat Med 20: 555–560, 2014 PubMed

Breen EP, Pilgrim W, Clarke KJ, Yssel C, Farrell M, Zhou J, Murphy PV, and Porter RK. Lack of activation of UCP1 in isolated brown adipose tissue mitochondria by glucose-O-ω-modified saturated fatty acids of various chain lengths. J Chem Biol 6: 121–133, 2013 PubMed PMC

Brookes PS, Parker N, Buckingham JA, Vidal-Puig A, Halestrap AP, Gunter TE, Nicholls DG, Bernardi P, Lemasters JJ, and Brand MD. UCPs—unlikely calcium porters. Nat Cell Biol 10: 1235–1237, 2008 PubMed PMC

Bugge A, Siersbæk M, Madsen MS, Göndör A, Rougier C, and Mandrup S. A novel intronic peroxisome proliferator-activated receptor γ enhancer in the uncoupling protein (UCP) 3 gene as a regulator of both UCP2 and −3 expression in adipocytes. J Biol Chem 285: 17310–17317, 2010 PubMed PMC

Bugger H, Guzman C, Zechner C, Palmeri M, Russell KS, and Russell RR. Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemother Pharmacol 67: 1381–1388, 2011 PubMed PMC

Cabrera JA, Ziemba EA, Colbert R, Kelly RF, Kuskowski M, Arriaga EA, Sluiter W, Duncker DJ, Ward HB, and McFalls EO. Uncoupling protein-2 expression and effects on mitochondrial membrane potential and oxidant stress in heart tissue. Transl Res 159: 383–390, 2012 PubMed PMC

Calegari V, Zoppi CC, Rezende L, Silveira L, Carneiro E, and Boschero AC. Endurance training activates pancreatic islets AMP-activated kinase-uncoupling protein 2 pathway and reduces insulin secretion. J Endocrinol 208: 257–264, 2011 PubMed

Cannon B, Shabalina IG, Kramarova TV, Petrovic N, and Nedergaard J. Uncoupling proteins: a role in protection against reactive oxygen species-or not? Biochim Biophys Acta 1757: 449–458, 2006 PubMed

Caron A, Labbé SM, Carter S, Roy MC, Lecomte R, Ricquier D, Picard F, and Richard D. Loss of UCP2 impairs cold-induced non-shivering thermogenesis by promoting a shift toward glucose utilization in brown adipose tissue. Biochimie 134: 118–126, 2017 PubMed

Carroll AM, Haines LR, Pearson TW, Fallon PG, Walsh CM, Brennan CM, Breen EP, and Porter RK. Identification of a functioning mitochondrial uncoupling protein 1 in thymus. J Biol Chem 280: 15534–15543, 2005 PubMed

Casanova E, Baselga-Escudero L, Ribas-Latre A, Arola-Arnal A, Bladé C, Arola L, and Salvadó MJ. Epigallocatechin gallate counteracts oxidative stress in docosahexaenoxic acid-treated myocytes. Biochim Biophys Acta 1837: 783–791, 2014 PubMed

Chae HZ, Oubrahim H, Park JW, Rhee SG, and Chock PB. Protein Glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific peroxidases that function as antioxidants, molecular chaperones, and signal modulators. Antioxid Redox Signal 16: 506–523, 2012 PubMed PMC

Chan CB. and Harper ME. Uncoupling proteins: role in insulin resistance and insulin insufficiency. Curr Diabetes Rev 2: 271–283, 2006 PubMed PMC

Chan SL, Liu D, Kyriazis GA, Bagsiyao P, Ouyang X, and Mattson MP. Mitochondrial uncoupling protein-4 regulates calcium homeostasis and sensitivity to store depletion-induced apoptosis in neural cells. J Biol Chem 281: 37391–37403, 2006 PubMed

Chandel NS. Evolution of mitochondria as signaling organelles. Cell Metab 22: 204–206, 2015 PubMed

Chandel NS. Mitochondrial complex III: an essential component of universal oxygen sensing machinery? Respir Physiol Neurobiol 174: 175–181, 2010 PubMed PMC

Chaudhuri L, Srivastava RK, Kos F, and Shrikant PA. Uncoupling protein 2 regulates metabolic reprogramming and fate of antigen-stimulated CD8+ T cells. Cancer Immunol Immunother 65: 869–874, 2016 PubMed PMC

Che M, Wang R, Li X, Wang HY, and Zheng XFS. Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov Today 21: 143–149, 2016 PubMed PMC

Chen C, Wang K, Chen J, Guo J, Yin Y, Cai X, Guo X, Wang G, Yang R, Zhu L, Zhang Y, Wang J, Xiang Y, Weng C, Zen K, Zhang J, and Zhang CY. In vitro evidence suggests that miR-133a-mediated regulation of uncoupling protein 2 (UCP2) is an indispensable step in myogenic differentiation. J Biol Chem 284: 5362–5369, 2009 PubMed

Chen Y, Liu J, Zheng Y, Wang J, Wang Z, Gu S, Tan J, Jing Q, and Yang H. Uncoupling protein 3 mediates H2O2 preconditioning-afforded cardioprotection through the inhibition of MPTP opening. Cardiovasc Res 105: 192–202, 2015 PubMed

Cheng J, Nanayakkara G, Shao Y, Cueto R, Wang L, Yang WY, Tian Y, Wang H, and Yang X. Mitochondrial proton leak plays a critical role in pathogenesis of cardiovascular diseases. Adv Exp Med Biol 982: 359–370, 2017 PubMed PMC

Cheurfa N, Dubois-Laforgue D, Ferrarezi DAF, Reis AF, Brenner GM, Bouche C, Le Feuvre C, Fumeron F, Timsit J, Marre M, and Velho G. The common −866G>A variant in the promoter of UCP2 is associated with decreased risk of coronary artery disease in type 2 diabetic men. Diabetes 57: 1063–1068, 2008 PubMed

Cho SY, Seo D, Kim WG, and Lee S. Mild mitochondrial uncoupling prevents premature senescence in human dermal fibroblasts. J Invest Dermatol 134: 540–543, 2014 PubMed

Cho YS, Lee JH, Jung KH, Park JW, Moon SH, Choe YS, and Lee KH. Molecular mechanism of 18F-FDG uptake reduction induced by genipin in T47D cancer cell and role of uncoupling protein-2 in cancer cell glucose metabolism. Nucl Med Biol 43: 587–592, 2016 PubMed

Chouchani ET, Kazak L, Jedrychowski MP, Lu GZ, Erickson BK, Szpyt J, Pierce KA, Laznik-Bogoslavski D, Vetrivelan R, Clish CB, Robinson AJ, Gygi SP, and Spiegelman BM. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 532: 112–116, 2016 PubMed PMC

Chouchani ET, Kazak L, and Spiegelman BM. Mitochondrial reactive oxygen species and adipose tissue thermogenesis: bridging physiology and mechanisms. J Biol Chem 292: 16810–16816, 2017 PubMed PMC

Chouchani ET, Methner C, Buonincontri G, Hu CH, Logan A, Sawiak SJ, Murphy MP, and Krieg T. Complex I deficiency due to selective loss of Ndufs4 in the mouse heart results in severe hypertrophic cardiomyopathy. PLoS One 9: e94157, 2014 PubMed PMC

Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, Eyassu F, Shirley R, Hu C-H, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa ASH, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, and Murphy MP. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515: 431–435, 2014 PubMed PMC

Chuang YC, Lin TK, Huang HY, Chang WN, Liou CW, Chen SD, Chang AY, and Chan SH. Peroxisome proliferator-activated receptors γ/mitochondrial uncoupling protein 2 signaling protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus. J Neuroinflammation 9: 672, 2012 PubMed PMC

Clarke KJ. and Porter RK. Uncoupling protein 1 dependent reactive oxygen species production by thymus mitochondria. Int J Biochem Cell Biol 45: 81–89, 2013 PubMed

Contreras L, Rial E, Cerdan S, and Satrustegui J. Uncoupling protein 2 (UCP2) function in the brain as revealed by the cerebral metabolism of (1-13C)-glucose. Neurochem Res 42: 108–114, 2017 PubMed

Coppola A, Liu ZW, Andrews ZB, Paradis E, Roy MC, Friedman JM, Ricquier D, Richard D, Horvath TL, Gao XB, and Diano S. A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metab 5: 21–33, 2007 PubMed PMC

Corcoran A. and Cotter TG. Redox regulation of protein kinases. FEBS J 280: 1944–1965, 2013 PubMed

Cosentino-Gomes D, Rocco-Machado N, and Meyer-Fernandes JR. Cell signaling through protein kinase C oxidation and activation. Int J Mol Sci 13: 10697–10721, 2012 PubMed PMC

Costa Rosa LF, Curi R, Murphy C, and Newsholme P. Effect of adrenaline and phorbol myristate acetate or bacterial lipopolysaccharide on stimulation of pathways of macrophage glucose, glutamine and O2 metabolism. Evidence for cyclic AMP-dependent protein kinase mediated inhibition of glucose-6-phosphate dehydrogenase and activation of NADP+-dependent ‘malic’ enzyme. Biochem J 310: 709–714, 1995 PubMed PMC

Couplan E, Gonzalez-Barroso MDM, Alves-Guerra MC, Ricquier D, Goubern M, and Bouillaud F. No evidence for a basal, retinoic, or superoxide-induced uncoupling activity of the uncoupling protein 2 present in spleen or lung mitochondria. J Biol Chem 277: 26268–26275, 2002 PubMed

Crichton PG, Lee Y, and Kunji ERS. The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism. Biochimie 134: 35–50, 2017 PubMed PMC

Cruz MD, Ledbetter S, Chowdhury S, Tiwari AK, Momi N, Wali RK, Bliss C, Huang C, Lichtenstein D, Bhattacharya S, Varma-Wilson A, Backman V, and Roy HK. Metabolic reprogramming of the premalignant colonic mucosa is an early event in carcinogenesis. Oncotarget 8: 20543–20557, 2017 PubMed PMC

D'Adamo M, Perego L, Cardellini M, Marini MA, Frontoni S, Andreozzi F, Sciacqua A, Lauro D, Sbraccia P, Federici M, Paganelli M, Pontiroli AE, Lauro R, Perticone F, Folli F, and Sesti G. The −866A/A genotype in the promoter of the human uncoupling protein 2 gene is associated with insulin resistance and increased risk of type 2 diabetes. Diabetes 53: 1905–1910, 2004 PubMed

Daiber A, Di Lisa F, Oelze M, Kröller-Schön S, Steven S, Schulz E, and Münzel T. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br J Pharmacol 174: 1670–1689, 2017 PubMed PMC

Dalgaard LT. Genetic variance in uncoupling protein 2 in relation to obesity, type 2 diabetes, and related metabolic traits: focus on the functional −866G>A promoter variant (rs659366). J Obes 2011: 1–12, 2011 PubMed PMC

Dalgaard LT, Andersen G, Larsen LH, Sørensen TIA, Andersen T, Drivsholm T, Borch-Johnsen K, Fleckner J, Hansen T, Din N, and Pedersen O. Mutational analysis of the UCP2 core promoter and relationships of variants with obesity. Obes Res 11: 1420–1427, 2003 PubMed

Dando I, Fiorini C, Pozza ED, Padroni C, Costanzo C, Palmieri M, and Donadelli M. UCP2 inhibition triggers ROS-dependent nuclear translocation of GAPDH and autophagic cell death in pancreatic adenocarcinoma cells. Biochim Biophys Acta 1833: 672–679, 2013 PubMed

Dato S, De Rango F, Crocco P, Passarino G, and Rose G. Pleiotropic effects of UCP2–UCP3 variability on leucocyte telomere length and glucose homeostasis. Biogerontology 18: 347–355, 2017 PubMed

De Andrade PBM, Casimir M, and Maechler P. Mitochondrial activation and the pyruvate paradox in a human cell line. FEBS Lett 578: 224–228, 2004 PubMed

De Lange P, Feola A, Ragni M, Senese R, Moreno M, Lombardi A, Silvestri E, Amat R, Villarroya F, Goglia F, and Lanni A. Differential 3,5,3′-triiodothyronine-mediated regulation of uncoupling protein 3 transcription: role of fatty acids. Endocrinology 148: 4064–4072, 2007 PubMed

De Marchi U, Castelbou C, and Demaurex N. Uncoupling protein 3 (UCP3) modulates the activity of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) by decreasing mitochondrial ATP production. J Biol Chem 286: 32533–32541, 2011 PubMed PMC

De Simone R, Ajmone-Cat MA, Pandolfi M, Bernardo A, De Nuccio C, Minghetti L, and Visentin S. The mitochondrial uncoupling protein-2 is a master regulator of both M1 and M2 microglial responses. J Neurochem 135: 147–156, 2015 PubMed

De Stefani D, Raffaello A, Teardo E, Szabò I, and Rizzuto R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476: 336–340, 2011 PubMed PMC

De Stefani D, Rizzuto R, and Pozzan T. Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem 85: 161–192, 2016 PubMed

Den Besten G, Bleeker A, Gerding A, Van Eunen K, Havinga R, Van Dijk TH, Oosterveer MH, Jonker JW, Groen AK, Reijngoud DJ, and Bakker BM. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 64: 2398–2408, 2015 PubMed

Derdák Z, Fülöp P, Sabo E, Tavares R, Berthiaume EP, Resnick MB, Paragh G, Wands JR, and Baffy G. Enhanced colon tumor induction in uncoupling protein-2 deficient mice is associated with NF-κB activation and oxidative stress. Carcinogenesis 27: 956–961, 2006 PubMed

Derdák Z, Mark NM, Beldi G, Robson SC, Wands JR, and Baffy G. The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Res 68: 2813–2819, 2008 PubMed PMC

Dhamrait SS, Stephens JW, Cooper JA, Acharya J, Mani AR, Moore K, Miller GJ, Humphries SE, Hurel SJ, and Montgomery HE. Cardiovascular risk in healthy men and markers of oxidative stress in diabetic men are associated with common variation in the gene for uncoupling protein 2. Eur Heart J 25: 468–475, 2004 PubMed

Diano S, Liu ZW, Jeong JK, Dietrich MO, Ruan HB, Kim E, Suyama S, Kelly K, Gyengesi E, Arbiser JL, Belsham DD, Sarruf DA, Schwartz MW, Bennett AM, Shanabrough M, Mobbs CV, Yang X, Gao XB, and Horvath TL. Peroxisome proliferation–associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat Med 17: 1121–1127, 2011 PubMed PMC

Ding WX, Li M, Biazik JM, Morgan DG, Guo F, Ni HM, Goheen M, Eskelinen EL, and Yin XM. Electron microscopic analysis of a spherical mitochondrial structure. J Biol Chem 287: 42373–42378, 2012 PubMed PMC

Divakaruni AS. and Brand MD. The regulation and physiology of mitochondrial proton leak. Physiology 26: 192–205, 2011 PubMed

Dlasková A, Hlavatá L, Ježek J, and Ježek P. Mitochondrial Complex I superoxide production is attenuated by uncoupling. Int J Biochem Cell Biol 40: 2098–2109, 2008 PubMed

Dlasková A, Hlavatá L, and Ježek P. Oxidative stress caused by blocking of mitochondrial Complex I H+ pumping as a link in aging/disease vicious cycle. Int J Biochem Cell Biol 40: 1792–1805, 2008 PubMed

Dlasková A, Špacek T, Škobisová E, Šantorová J, and Ježek P. Certain aspects of uncoupling due to mitochondrial uncoupling proteins in vitro and in vivo. Biochim Biophys Acta 1757: 467–473, 2006 PubMed

Donadelli M, Dando I, Fiorini C, and Palmieri M. UCP2, a mitochondrial protein regulated at multiple levels. Cell Mol Life Sci 71: 1171–1190, 2014 PubMed PMC

Donadelli M, Dando I, Pozza ED, and Palmieri M. Mitochondrial uncoupling protein 2 and pancreatic cancer: a new potential target therapy. World J Gastroenterol 21: 3232–3238, 2015 PubMed PMC

Dröse S. and Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol 748: 145–169, 2012 PubMed

Du RH, Wu FF, Lu M, Shu X dong, Ding JH, Wu G, and Hu G. Uncoupling protein 2 modulation of the NLRP3 inflammasome in astrocytes and its implications in depression. Redox Biol 9: 178–187, 2016 PubMed PMC

Duffy CM, Xu H, Nixon JP, Bernlohr DA, and Butterick TA. Identification of a fatty acid binding protein4-UCP2 axis regulating microglial mediated neuroinflammation. Mol Cell Neurosci 80: 52–57, 2017 PubMed PMC

Duteil D, Chambon C, Ali F, Malivindi R, Zoll J, Kato S, Geny B, Chambon P, and Metzger D. The transcriptional coregulators TIF2 and SRC-1 regulate energy homeostasis by modulating mitochondrial respiration in skeletal muscles. Cell Metab 12: 496–508, 2010 PubMed PMC

Duval C, Nègre-Salvayre A, Doglio A, Salvayre R, Pénicaud L, and Casteilla L. Increased reactive oxygen species production with antisense oligonucleotides directed against uncoupling protein 2 in murine endothelial cells. Biochem Cell Biol 80: 757–764, 2002 PubMed

Echeverría F, Ortiz M, Valenzuela R, and Videla LA. Long-chain polyunsaturated fatty acids regulation of PPARs, signaling: relationship to tissue development and aging. Prostaglandins Leukot Essent Fatty Acids 114: 28–34, 2016 PubMed

Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otín M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, and Brand MD. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 22: 4103–4110, 2003 PubMed PMC

Eisner V, Cupo RR, Gao E, Csordás G, Slovinsky WS, Paillard M, Cheng L, Ibetti J, Chen SRW, Chuprun JK, Hoek JB, Koch WJ, and Hajnóczky G. Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity. Proc Natl Acad Sci U S A 114: E859–E868, 2017 PubMed PMC

Elorza A, Hyde B, Mikkola HK, Collins S, and Shirihai OS. UCP2 modulates cell proliferation through the MAPK/ERK pathway during erythropoiesis and has no effect on heme biosynthesis. J Biol Chem 283: 30461–30470, 2008 PubMed PMC

Emre Y, Hurtaud C, Nübel T, Criscuolo F, Ricquier D, and Cassard-Doulcier AM. Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages. Biochem J 402: 271–278, 2007 PubMed PMC

Emre Y. and Nübel T. Uncoupling protein UCP2: when mitochondrial activity meets immunity. FEBS Lett 584: 1437–1442, 2010 PubMed

Esterbauer H, Schneitler C, Oberkofler H, Ebenbichler C, Paulweber B, Sandhofer F, Ladurner G, Hell E, Strosberg AD, Patsch JR, Krempler F, and Patsch W. A common polymorphism in the promoter of UCP2 is associated with decreased risk of obesity in middle-aged humans. Nat Genet 28: 178–183, 2001 PubMed

Esteves P, Pecqueur C, and Alves-Guerra MC. UCP2 induces metabolic reprogramming to inhibit proliferation of cancer cells. Mol Cell Oncol 2: e975024, 2015 PubMed PMC

Esteves P, Pecqueur C, Ransy C, Esnous C, Lenoir V, Bouillaud F, Bulteau AL, Lombès A, Prip-Buus C, Ricquier D, and Alves-Guerra MC. Mitochondrial retrograde signaling mediated by UCP2 inhibits cancer cell proliferation and tumorigenesis. Cancer Res 74: 3971–3982, 2014 PubMed

Fan Y, Futawaka K, Koyama R, Fukuda Y, Hayashi M, Imamoto M, Miyawaki T, Kasahara M, Tagami T, and Moriyama K. Vitamin D3/VDR resists diet-induced obesity by modulating UCP3 expression in muscles. J Biomed Sci 23: 1–12, 2016 PubMed PMC

Fedorenko A, Lishko PV, and Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151: 400–413, 2012 PubMed PMC

Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, and Warden CH. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet 15: 269–272, 1997 PubMed

Freigang S, Ampenberger F, Weiss A, Kanneganti T-D, Iwakura Y, Hersberger M, and Kopf M. Fatty acid–induced mitochondrial uncoupling elicits inflammasome-independent IL-1α and sterile vascular inflammation in atherosclerosis. Nat Immunol 14: 1045–1053, 2013 PubMed

Fukumori R, Takarada T, Kambe Y, Nakazato R, Fujikawa K, and Yoneda Y. Possible involvement of mitochondrial uncoupling protein-2 in cytotoxicity mediated by acquired N-methyl-d-aspartate receptor channels. Neurochem Int 61: 498–505, 2012 PubMed

Fukumori R, Takarada T, Nakazato R, Fujikawa K, Kou M, Hinoi E, and Yoneda Y. Selective inhibition by ethanol of mitochondrial calcium influx mediated by uncoupling protein-2 in relation to N-methyl-D-aspartate cytotoxicity in cultured neurons. PLoS One 8: e69718, 2013 PubMed PMC

Gable DR, Stephens JW, Cooper JA, Miller GJ, and Humphries SE. Variation in the UCP2-UCP3 gene cluster predicts the development of type 2 diabetes in healthy middle-aged men. Diabetes 55: 1504–1511, 2006 PubMed

Galetti S, Sarre A, Perreten H, Produit-Zengaffinen N, Muzzin P, and Assimacopoulos-Jeannet F. Fatty acids do not activate UCP2 in pancreatic beta cells: comparison with UCP1. Pflugers Arch Eur J Physiol 457: 931–940, 2009 PubMed

Gargiulo S, Petretta MP, Greco A, Panico M, Larobina M, Gramanzini M, Schiattarella GG, Esposito G, Petretta M, Brunetti A, and Cuocolo A. Genetic deletion in uncoupling protein 3 augments 18F-fluorodeoxyglucose cardiac uptake in the ischemic heart. BMC Cardiovasc Disord 14: 98, 2014 PubMed PMC

Garlid AO, Jabůrek M, Jacobs JP, and Garlid KD. Mitochondrial reactive oxygen species: which ROS signals cardioprotection? Am J Physiol Heart Circ Physiol 305: H960–H968, 2013 PubMed PMC

Garlid KD, Costa ADT, Quinlan CL, Pierre SV, and Dos Santos P. Cardioprotective signaling to mitochondria. J Mol Cell Cardiol 46: 858–866, 2009 PubMed PMC

Garlid KD, Jabůrek M, and Ježek P. Mechanism of uncoupling protein action. Biochem Soc Trans 29: 803–806, 2001 PubMed

Garlid KD, Jabůrek M, and Ježek P. The mechanism of proton transport mediated by mitochondrial uncoupling proteins. FEBS Lett 438: 10–14, 1998 PubMed

Garlid KD, Jabůrek M, Ježek P, and Vařecha M. How do uncoupling proteins uncouple? Biochim Biophys Acta 1459: 383–389, 2000 PubMed

Garlid KD. and Nakashima RA. Studies on the mechanism of uncoupling by amine local anesthetics. Evidence for mitochondrial proton transport mediated by lipophilic ion pairs. J Biol Chem 258: 7974–7980, 1983 PubMed

Garlid KD, Orosz DE, Modrianský M, Vassanelli S, and Ježek P. On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein. J Biol Chem 271: 2615–2620, 1996 PubMed

Georgiadi A, Boekschoten MV, Muller M, and Kersten S. Detailed transcriptomics analysis of the effect of dietary fatty acids on gene expression in the heart. Physiol Genomics 44: 352–361, 2012 PubMed

Gerö D. and Szabo C. Glucocorticoids suppress mitochondrial oxidant production via upregulation of uncoupling protein 2 in hyperglycemic endothelial cells. PLoS One 11: e0154813, 2016 PubMed PMC

Giardina TM, Steer JH, Lo SZY, and Joyce DA. Uncoupling protein-2 accumulates rapidly in the inner mitochondrial membrane during mitochondrial reactive oxygen stress in macrophages. Biochim Biophys Acta 1777: 118–129, 2008 PubMed

Gimeno RE, Dembski M, Weng X, Deng N, Shyjan AW, Gimeno CJ, Iris F, Ellis SJ, Woolf EA, and Tartaglia LA. Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes 46: 900–906, 1997 PubMed

Giorgi C, Agnoletto C, Baldini C, Bononi A, Bonora M, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Zavan B, and Pinton P. Redox control of protein kinase C: cell-and disease-specific aspects. Antioxid Redox Signal 13: 1051–1085, 2010 PubMed

Glancy B, Hartnell LM, Malide D, Yu Z-X, Combs CA, Connelly PS, Subramaniam S, and Balaban RS. Mitochondrial reticulum for cellular energy distribution in muscle. Nature 523: 617–620, 2015 PubMed PMC

Gopalakrishna R. and Jaken S. Protein kinase C signaling and oxidative stress. Free Radic Biol Med 28: 1349–1361, 2000 PubMed

Guex N. and Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723, 1997 PubMed

Guillaud F, Dröse S, Kowald A, Brandt U, and Klipp E. Superoxide production by cytochrome bc1 complex: a mathematical model. Biochim Biophys Acta 1837: 1643–1652, 2014 PubMed

Gunter TE. and Gunter KK. Uptake of calcium by mitochondria: transport and possible function. IUBMB Life 52: 197–204, 2002 PubMed

Gunter TE. and Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Physiol 258: C755–C786, 1990 PubMed

Gutierrez J, Ballinger SW, Darley-Usmar VM, and Landar A. Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells. Circ Res 99: 924–932, 2006 PubMed

Haines B. and Li PA. Overexpression of mitochondrial uncoupling protein 2 inhibits inflammatory cytokines and activates cell survival factors after cerebral ischemia. PLoS One 7: e31739, 2012 PubMed PMC

Hamanaka RB, Weinberg SE, Reczek CR, and Chandel NS. The mitochondrial respiratory chain is required for organismal adaptation to hypoxia. Cell Rep 15: 451–459, 2016 PubMed PMC

Hanák P. and Ježek P. Mitochondrial uncoupling proteins and phylogenesis—UCP4 as the ancestral uncoupling protein. FEBS Lett 495: 137–141, 2001 PubMed

Hara-Chikuma M, Satooka H, Watanabe S, Honda T, Miyachi Y, Watanabe T, and Verkman AS. Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nat Commun 6: 7454, 2015 PubMed PMC

Harmancey R, Haight DL, Watts KA, and Taegtmeyer H. Chronic hyperinsulinemia causes selective insulin resistance and down-regulates uncoupling protein 3 (UCP3) through the activation of sterol regulatory element-binding protein (SREBP)-1 transcription factor in the mouse heart. J Biol Chem 290: 30947–30961, 2015 PubMed PMC

Haslip M, Dostanic I, Huang Y, Zhang Y, Russell KS, Jurczak MJ, Mannam P, Giordano F, Erzurum SC, and Lee PJ. Endothelial uncoupling protein 2 regulates mitophagy and pulmonary hypertension during intermittent hypoxia. Arterioscler Thromb Vasc Biol 35: 1166–1178, 2015 PubMed PMC

Hass DT. and Barnstable CJ. Uncoupling protein 2 in the glial response to stress: implications for neuroprotection. Neural Regen Res 11: 1197–1200, 2016 PubMed PMC

Hauck AK. and Bernlohr DA. Oxidative stress and lipotoxicity. J Lipid Res 57: 1976–1986, 2016 PubMed PMC

Hauton D. and Evans R. Utilisation of fatty acid and triacylglycerol by rat macrophages: the effect of endotoxin. Cell Physiol Biochem 12: 293–304, 2002 PubMed

Hermes G, Nagy D, Waterson M, Zsarnovszky A, Varela L, Hajos M, and Horvath TL. Role of mitochondrial uncoupling protein-2 (UCP2) in higher brain functions, neuronal plasticity and network oscillation. Mol Metab 5: 415–421, 2016 PubMed PMC

Hertzel AV, Xu H, Downey M, Kvalheim N, and Bernlohr DA. Fatty acid binding protein 4/Ap2-dependent BLT1R expression and signaling. J Lipid Res 58: 1354–1361, 2017 PubMed PMC

Higdon AN, Landar A, Barnes S, and Darley-Usmar VM. The electrophile responsive proteome: integrating proteomics and lipidomics with cellular function. Antioxid Redox Signal 17: 1580–1589, 2012 PubMed PMC

Hima S. and Sreeja S. Regulatory role of estrogen-induced reactive oxygen species in the modulatory function of UCP 2 in papillary thyroid cancer cells. IUBMB Life 67: 837–846, 2015 PubMed

Hirose M, Schilf P, Lange F, Mayer J, Reichart G, Maity P, Jöhren O, Schwaninger M, Scharffetter-Kochanek K, Sina C, Sadik CD, Köhling R, Miroux B, and Ibrahim SM. Uncoupling protein 2 protects mice from aging. Mitochondrion 30: 42–50, 2016 PubMed

Ho JWM, Ho PWL, Zhang WY, Liu HF, Kwok KHH, Yiu DCW, Chan KH, Kung MHW, Ramsden DB, and Ho SL. Transcriptional regulation of UCP4 by NF-κB and its role in mediating protection against MPP+ toxicity. Free Radic Biol Med 49: 192–204, 2010 PubMed

Ho PW, Ho JW, Liu HF, So DH, Tse ZH, Chan KH, Ramsden DB, and Ho SL. Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson's disease. Transl Neurodegener 1: 3–12, 2012 PubMed PMC

Ho PWL, Chu ACY, Kwok KHH, Kung MHW, Ramsden DB, and Ho SL. Knockdown of uncoupling protein-5 in neuronal SH-SY5Y cells: effects on MPP+-induced mitochondrial membrane depolarization, ATP deficiency, and oxidative cytotoxicity. J Neurosci Res 84: 1358–1366, 2006 PubMed

Ho PWL, Ho JWM, Tse HM, So DHF, Yiu DCW, Liu HF, Chan KH, Kung MHW, Ramsden DB, and Ho SL. Uncoupling protein-4 (UCP4) increases ATP supply by interacting with mitochondrial complex II in neuroblastoma cells. PLoS One 7: e32810, 2012 PubMed PMC

Hoang T, Kuljanin M, Smith MD, and Jelokhani-Niaraki M. A biophysical study on molecular physiology of the uncoupling proteins of the central nervous system. Biosci Rep 35: e00226, 2015 PubMed PMC

Hoang T, Matovic T, Parker J, Smith MD, and Jelokhani-Niaraki M. Role of positively charged residues of the second transmembrane domain in the ion transport activity and conformation of human uncoupling protein-2. Biochemistry 54: 2303–2313, 2015 PubMed

Hoffman NE, Chandramoorthy HC, Shanmughapriya S, Zhang XQ, Vallem S, Doonan PJ, Malliankaraman K, Guo S, Rajan S, Elrod JW, Koch WJ, Cheung JY, and Madesh M. SLC25A23 augments mitochondrial Ca2+ uptake, interacts with MCU, and induces oxidative stress-mediated cell death. Mol Biol Cell 25: 936–947, 2014 PubMed PMC

Hoffmann C, Zimmermann A, Hinney A, Volckmar AL, Jarrett HW, Fromme T, and Klingenspor M. A novel SP1/SP3 dependent intronic enhancer governing transcription of the UCP3 gene in brown adipocytes. PLoS One 8: e83426, 2013 PubMed PMC

Huang Z, Li J, Du S, Chen G, Qi Y, Huang L, Xiao L, and Tong P. Effects of UCP4 on the proliferation and apoptosis of chondrocytes: its possible involvement and regulation in osteoarthritis. PLoS One 11: e0150684, 2016 PubMed PMC

Hurtaud C, Gelly C, Bouillaud F, and Lévi-Meyrueis C. Translation control of UCP2 synthesis by the upstream open reading frame. Cell Mol Life Sci 63: 1780–1789, 2006 PubMed PMC

Hurtaud C, Gelly C, Chen Z, Lévi-Meyrueis C, and Bouillaud F. Glutamine stimulates translation of uncoupling protein 2 mRNA. Cell Mol Life Sci 64: 1853–1860, 2007 PubMed PMC

Iannucci LF, Sun J, Singh BK, Zhou J, Kaddai VA, Lanni A, Yen PM, and Sinha RA. Short chain fatty acids induce UCP2-mediated autophagy in hepatic cells. Biochem Biophys Res Commun 480: 461–467, 2016 PubMed

Imoto K, Kukidome D, Nishikawa T, Matsuhisa T, Sonoda K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Tsuruzoe K, Matsumura T, Ichijo H, and Araki E. Impact of mitochondrial reactive oxygen species and apoptosis signal-regulating kinase 1 on insulin signaling. Diabetes 55: 1197–1204, 2006 PubMed

Jabůrek M, Costa ADT, Burton JR, Costa CL, and Garlid KD. Mitochondrial PKCɛ and mitochondrial ATP-sensitive K+ channel copurify and coreconstitute to form a functioning signaling module in proteoliposomes. Circ Res 99: 878–883, 2006 PubMed

Jabůrek M. and Garlid KD. Reconstitution of recombinant uncoupling proteins. UCP1, −2, and −3 have similar affinities for ATP and are unaffected by coenzyme Q10. J Biol Chem 278: 25825–25831, 2003 PubMed

Jabůrek M, Ježek J, Zelenka J, and Ježek P. Antioxidant activity by a synergy of redox-sensitive mitochondrial phospholipase A2 and uncoupling protein-2 in lung and spleen. Int J Biochem Cell Biol 45: 816–825, 2013 PubMed

Jabůrek M, Miyamoto S, Di Mascio P, Garlid KD, and Ježek P. Hydroperoxy fatty acid cycling mediated by mitochondrial uncoupling protein UCP2. J Biol Chem 279: 53097–53102, 2004 PubMed

Jabůrek M, Vařecha M, Gimeno RE, Dembski M, Ježek P, Zhang MB, Burn P, Tartaglia LA, and Garlid KD. Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J Biol Chem 274: 26003–26007, 1999 PubMed

Jabůrek M, Vařecha M, Ježek P, and Garlid KD. Alkylsulfonates as probes of uncoupling protein transport mechanism. Ion pair transport demonstrates that direct H+ translocation by UCP1 is not necessary for uncoupling. J Biol Chem 276: 31897–31905, 2001 PubMed

Jastroch M, Withers K, and Klingenspor M. Uncoupling protein 2 and 3 in marsupials: identification, phylogeny, and gene expression in response to cold and fasting in Antechinus flavipes. Physiol Genomics 17: 130–139, 2004 PubMed

Jeanson Y, Carrière A, and Casteilla L. A new role for browning as a redox and stress adaptive mechanism? Front Endocrinol (Lausanne) 6: 158, 2015 PubMed PMC

Ježek J, Dlasková A, Zelenka J, Jabůrek M, and Ježek P. H2O2-activated mitochondrial phospholipase iPLA2γ prevents lipotoxic oxidative stress in synergy with UCP2, amplifies signaling via G-protein–coupled receptor GPR40, and regulates insulin secretion in pancreatic β-cells. Antioxid Redox Signal 23: 958–972, 2015 PubMed PMC

Ježek J, Engstová H, and Ježek P. Antioxidant mechanism of mitochondria-targeted plastoquinone SkQ1 is suppressed in aglycemic HepG2 cells dependent on oxidative phosphorylation. Biochim Biophys Acta 1858: 750–762, 2017 PubMed

Ježek J, Jabůrek M, Zelenka J, and Ježek P. Mitochondrial phospholipase A2 activated by reactive oxygen species in heart mitochondria induces mild uncoupling. Physiol Res 59: 737–747, 2010 PubMed

Ježek P, Bauer M, and Trommer WE. EPR spectroscopy of 5-DOXYL-stearic acid bound to the mitochondrial uncoupling protein reveals its competitive displacement by alkylsulfonates in the channel and allosteric displacement by ATP. FEBS Lett 361: 303–307, 1995 PubMed

Ježek P. and Borecký J. Inner membrane anion channel and dicarboxylate carrier in brown adipose tissue mitochondria. Int J Biochem Cell Biol 28: 659–666, 1996 PubMed

Ježek P. and Borecký J. Mitochondrial uncoupling protein may participate in futile cycling of pyruvate and other monocarboxylates. Am J Physiol 275: C496–C504, 1998 PubMed

Ježek P, Dlasková A, and Plecitá-Hlavatá L. Redox homeostasis in pancreatic β cells. Oxid Med Cell Longev 2012: 932838, 2012 PubMed PMC

Ježek P, Engstová H, Žáčková M, Vercesi AE, Costa ADT, Arruda P, and Garlid KD. Fatty acid cycling mechanism and mitochondrial uncoupling proteins. Biochim Biophys Acta 1365: 319–327, 1998 PubMed

Ježek P, Fagian MM, Nekvasil M, Šantorová J, Jabůrek M, Garlid KD, and Vercesi AE. Function of uncoupling proteins UCP2 and UCP3 in isolated mitochondria. Biophys J 84: 203A, 2003

Ježek P. and Freisleben HJ. Fatty acid binding site of the mitochondrial uncoupling protein. Demonstration of its existence by EPR spectroscopy of 5-DOXYL-stearic acid. FEBS Lett 343: 22–26, 1994 PubMed

Ježek P. and Garlid KD. New substrates and competitive inhibitors of the Cl− translocating pathway of the uncoupling protein of brown adipose tissue mitochondria. J Biol Chem 265: 19303–19311, 1990 PubMed

Ježek P, Hanuš J, Semrad C, and Garlid KD. Photoactivated azido fatty acid irreversibly inhibits anion and proton transport through the mitochondrial uncoupling protein. J Biol Chem 271: 6199–6205, 1996 PubMed

Ježek P. and Hlavatá L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37: 2478–2503, 2005 PubMed

Ježek P, Houštěk J, and Drahota Z. Alkaline pH, membrane potential, and magnesium cations are negative modulators of purine nucleotide inhibition of H+ and Cl− transport through the uncoupling protein of brown adipose tissue mitochondria. J Bioenerg Biomembr 20: 603–622, 1988 PubMed

Ježek P, Jabůrek M, and Garlid KD. Channel character of uncoupling protein-mediated transport. FEBS Lett 584: 2135–2141, 2010 PubMed PMC

Ježek P. and Ježek J. Sequence anatomy of mitochondrial anion carriers. FEBS Lett 534: 15–25, 2003 PubMed

Ježek P, Modrianský M, and Garlid KD. A structure-activity study of fatty acid interaction with mitochondrial uncoupling protein. FEBS Lett 408: 166–170, 1997 PubMed

Ježek P, Modrianský M, and Garlid KD. Inactive fatty acids are unable to flip-flop across the lipid bilayer. FEBS Lett 408: 161–165, 1997 PubMed

Ježek P, Orosz DE, and Garlid KD. Reconstitution of the uncoupling protein of brown adipose tissue mitochondria. Demonstration of GDP-sensitive halide anion uniport. J Biol Chem 265: 19296–19302, 1990 PubMed

Ježek P, Orosz DE, Modriansky M, and Garlid KD. Transport of anions and protons by the mitochondrial uncoupling protein and its regulation by nucleotides and fatty acids: a new look at old hypotheses. J Biol Chem 269: 26184–26190, 1994 PubMed

Ježek P. and Plecitá-Hlavatá L. Mitochondrial reticulum network dynamics in relation to oxidative stress, redox regulation, and hypoxia. Int J Biochem Cell Biol 41: 1790–1804, 2009 PubMed

Ježek P, Plecitá-Hlavatá L, Smolková K, and Rossignol R. Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development. Int J Biochem Cell Biol 42: 604–622, 2010 PubMed

Ježek P, Špaček T, Garlid KD, and Jabůrek M. Undecanesulfonate does not allosterically activate H+ uniport mediated by uncoupling protein-1 in brown adipose tissue mitochondria. Int J Biochem Cell Biol 38: 1965–1974, 2006 PubMed

Ježek P. and Urbanková E. Specific sequence of motifs of mitochondrial uncoupling proteins. IUBMB Life 49: 63–70, 2000 PubMed

Ježek P, Žáčková M, Růzička M, Škobisová E, and Jabůrek M. Mitochondrial uncoupling proteins–facts and fantasies. Physiol Res 53 Suppl 1: S199–S211, 2004 PubMed

Ji F, Shen T, Zou W, and Jiao J. UCP2 regulates embryonic neurogenesis via ROS-mediated Yap alternation in the developing neocortex. Stem Cells 35: 1479–1492, 2017 PubMed

Ji Q, Ikegami H, Fujisawa T, Kawabata Y, Ono M, Nishino M, Ohishi M, Katsuya T, Rakugi H, and Ogihara T. A common polymorphism of uncoupling protein 2 gene is associated with hypertension. J Hypertens 22: 97–102, 2004 PubMed

Jiang D, Zhao L, and Clapham DE. Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326: 144–147, 2009 PubMed PMC

Jitrapakdee S, Wutthisathapornchai A, Wallace JC, and MacDonald MJ. Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia 53: 1019–1032, 2010 PubMed PMC

Jones DP. and Sies H. The redox code. Antioxid Redox Signal 23: 734–746, 2015 PubMed PMC

Jones E, Gaytan N, Garcia I, Herrera A, Ramos M, Agarwala D, Rana M, Innis-Whitehouse W, Schuenzel E, and Gilkerson R. A threshold of transmembrane potential is required for mitochondrial dynamic balance mediated by DRP1 and OMA1. Cell Mol Life Sci 74: 1347–1363, 2017 PubMed PMC

Kajimura S. and Saito M. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annu Rev Physiol 76: 225–249, 2014 PubMed PMC

Kamp F. and Hamilton JA. pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. Proc Natl Acad Sci U S A 89: 11367–11370, 1992 PubMed PMC

Kamp F, Hamilton JA, and Westerhoff HV. Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers. Biochemistry 32: 11074, 1993 PubMed

Kamp F, Zakim D, Zhang F, Noy N, and Hamilton JA. Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry 34: 11928–11937, 1995 PubMed

Kasahara A. and Scorrano L. Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol 24: 761–770, 2014 PubMed

Kim D, Jitrapakdee S, and Thompson M. Differential regulation of the promoter activity of the mouse UCP2 and UCP3 genes by MyoD and myogenin. J Biochem Mol Biol 40: 921–927, 2007 PubMed

Kim YM, Kim SJ, Tatsunami R, Yamamura H, Fukai T, and Ushio-Fukai M. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Am J Physiol Cell Physiol 312: C749–C764, 2017 PubMed PMC

King MS, Kerr M, Crichton PG, Springett R, and Kunji ERS. Formation of a cytoplasmic salt bridge network in the matrix state is a fundamental step in the transport mechanism of the mitochondrial ADP/ATP carrier. Biochim Biophys Acta 1857: 14–22, 2016 PubMed PMC

Kleine T. and Leister D. Retrograde signaling: organelles go networking. Biochim Biophys Acta 1857: 1313–1325, 2016 PubMed

Klingenberg M. Uncoupling proteins–how do they work and how are they regulated. IUBMB Life 52: 175–179, 2001 PubMed

Klingenspor M, Fromme T, Hughes DA, Manzke L, Polymeropoulos E, Riemann T, Trzcionka M, Hirschberg V, and Jastroch M. An ancient look at UCP1. Biochim Biophys Acta 1777: 637–641, 2008 PubMed

Klomsiri C, Karplus PA, and Poole LB. Cysteine-based redox switches in enzymes. Antioxid Redox Signal 14: 1065–1077, 2011 PubMed PMC

Kolwicz SC. and Tian R. Glucose metabolism and cardiac hypertrophy. Cardiovasc Res 90: 194–201, 2011 PubMed PMC

Kong D, Vong L, Parton LE, Ye C, Tong Q, Hu X, Choi B, Brüning JC, and Lowell BB. Glucose stimulation of hypothalamic MCH neurons involves KATP channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metab 12: 545–552, 2010 PubMed PMC

Konishi H, Yamauchi E, Taniguchi H, Yamamoto T, Matsuzaki H, Takemura Y, Ohmae K, Kikkawa U, and Nishizuka Y. Phosphorylation sites of protein kinase C delta in H2O2-treated cells and its activation by tyrosine kinase in vitro. Proc Natl Acad Sci U S A 98: 6587–6592, 2001 PubMed PMC

Korshunov SS, Korkina OV, Ruuge EK, Skulachev VP, and Starkov AA. Fatty acids as natural uncouplers preventing generation of O2•– and H2O2 by mitochondria in the resting state. FEBS Lett 435: 215–218, 1998 PubMed

Korshunov SS, Skulachev VP, and Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416: 15–18, 1997 PubMed

Korwitz A, Merkwirth C, Richter-Dennerlein R, Tröder SE, Sprenger HG, Quirós PM, López-Otín C, Rugarli EI, and Langer T. Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria. J Cell Biol 212: 157–166, 2016 PubMed PMC

Koziel A. and Jarmuszkiewicz W. Hypoxia and aerobic metabolism adaptations of human endothelial cells. Pflugers Arch Eur J Physiol 469: 1–13, 2017 PubMed PMC

Koziel A, Sobieraj I, and Jarmuszkiewicz W. Increased activity of mitochondrial uncoupling protein 2 improves stress resistance in cultured endothelial cells exposed in vitro to high glucose. Am J Physiol Heart Circ Physiol 309: H147–H156, 2015 PubMed

Kozlov AV, Lancaster JR, Meszaros AT, and Weidinger A. Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol 13: 170–181, 2017 PubMed PMC

Kukat A, Dogan SA, Edgar D, Mourier A, Jacoby C, Maiti P, Mauer J, Becker C, Senft K, Wibom R, Kudin AP, Hultenby K, Flögel U, Rosenkranz S, Ricquier D, Kunz WS, and Trifunovic A. Loss of UCP2 attenuates mitochondrial dysfunction without altering ROS production and uncoupling activity. PLoS Genet 10: e1004385, 2014 PubMed PMC

Kwok KHH, Ho PWL, Chu ACY, Ho JWM, Liu HF, Yiu DCW, Chan KH, Kung MHW, Ramsden DB, and Ho SL. Mitochondrial UCP5 is neuroprotective by preserving mitochondrial membrane potential, ATP levels, and reducing oxidative stress in MPP+ and dopamine toxicity. Free Radic Biol Med 49: 1023–1035, 2010 PubMed

Larbig R, Reda S, Paar V, Trost A, Leitner J, Weichselbaumer S, Motloch KA, Wernly B, Arrer A, Strauss B, Lichtenauer M, Reitsamer HA, Eckardt L, Seebohm G, Hoppe UC, and Motloch LJ. Through modulation of cardiac Ca2+ handling, UCP2 affects cardiac electrophysiology and influences the susceptibility for Ca2+-mediated arrhythmias. Exp Physiol 102: 650–662, 2017 PubMed

Lee JE, Westrate LM, Wu H, Page C, and Voeltz GK. Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540: 139–143, 2016 PubMed PMC

Lee KU, Lee IK, Han J, Song DK, Kim YM, Song HS, Kim HS, Lee WJ, Koh EH, Song KH, Han SM, Kim MS, Park IS, and Park JY. Effects of recombinant adenovirus-mediated uncoupling protein 2 overexpression on endothelial function and apoptosis. Circ Res 96: 1200–1207, 2005 PubMed

Lee MS, Kim IH, and Kim Y. Effects of eicosapentaenoic acid and docosahexaenoic acid on uncoupling protein 3 gene expression in C2C12 muscle cells. Nutrients 5: 1660–1671, 2013 PubMed PMC

Lee S, Kim SM, and Lee RT. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal 18: 1165–1207, 2013 PubMed PMC

Lee S, Moon H, Kim G, Cho JH, Lee DH, Ye MB, and Park D. Anion transport or nucleotide binding by UCP2 is indispensable for UCP2-mediated efferocytosis. Mol Cells 38: 657–662, 2015 PubMed PMC

Lee SC, Robson-Doucette CA, and Wheeler MB. Uncoupling protein 2 regulates reactive oxygen species formation in islets and influences susceptibility to diabetogenic action of streptozotocin. J Endocrinol 203: 33–43, 2009 PubMed

Le Fur S, Le Stunff C, Dos Santos C, and Bougnères P. The common −866 G/A polymorphism in the promoter of uncoupling protein 2 is associated with increased carbohydrate and decreased lipid oxidation in juvenile obesity. Diabetes 53: 235–239, 2004 PubMed

Lei L, Wang W, Jia Y, Su L, Zhou H, Verkman AS, and Yang B. Aquaporin-3 deletion in mice results in renal collecting duct abnormalities and worsens ischemia-reperfusion injury. Biochim Biophys Acta 1863: 1231–1241, 2017 PubMed

Lemieux H, Semsroth S, Antretter H, Höfer D, and Gnaiger E. Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 43: 1729–1738, 2011 PubMed

Lentes KU, Tu N, Chen H, Winnikes U, Reinert I, Marmann G, and Pirke KM. Genomic organization and mutational analysis of the human UCP2 gene, a prime candidate gene for human obesity. J Recept Signal Transduct Res 19: 229–244, 1999 PubMed

Li W, Nichols K, Nathan CA, and Zhao Y. Mitochondrial uncoupling protein 2 is up-regulated in human head and neck, skin, pancreatic, and prostate tumors. Cancer Biomarkers 13: 377–383, 2013 PubMed

Li W, Zhang C, Jackson K, Shen X, Jin R, Li G, Kevil CG, Gu X, Shi R, and Zhao Y. UCP2 knockout suppresses mouse skin carcinogenesis. Cancer Prev Res 8: 487–491, 2015 PubMed PMC

Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S, Yang W, Pei L, Uldry M, Tontonoz P, Newgard CB, and Spiegelman BM. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell 120: 261–273, 2005 PubMed

Liu GY, Ho Moon S, Jenkins CM, Li M, Sims HF, Guan S, and Gross RW. The phospholipase iPLA2 is a major mediator releasing oxidized aliphatic chains from cardiolipin, integrating mitochondrial bioenergetics and signaling. J Biol Chem 292: 10672–10684, 2017 PubMed PMC

Liu J, Jing X, Gan L, and Sun C. The JAK2/STAT3 signal pathway regulates the expression of genes related to skeletal muscle development and energy metabolism in mice and mouse skeletal muscle cells. Biosci Biotechnol Biochem 76: 1866–1870, 2012 PubMed

Liu L, Liu J, Tian XY, Wong WT, Lau CW, Xu A, Xu G, Ng CF, Yao X, Gao Y, and Huang Y. Uncoupling protein-2 mediates DPP-4 inhibitor-induced restoration of endothelial function in hypertension through reducing oxidative stress. Antioxid Redox Signal 21: 1571–1581, 2014 PubMed PMC

Lou J, Wang Y, Wang X, and Jiang Y. Uncoupling protein 2 regulates palmitic acid-induced hepatoma cell autophagy. Biomed Res Int 2014: 810401, 2014 PubMed PMC

Lu M, Sun XL, Qiao C, Liu Y, Ding JH, and Hu G. Uncoupling protein 2 deficiency aggravates astrocytic endoplasmic reticulum stress and nod-like receptor protein 3 inflammasome activation. Neurobiol Aging 35: 421–430, 2014 PubMed

MacVicar T. and Langer T. OPA1 processing in cell death and disease–the long and short of it. J Cell Sci 129: 2297–2306, 2016 PubMed

Madreiter-Sokolowski CT, Klec C, Parichatikanond W, Stryeck S, Gottschalk B, Pulido S, Rost R, Eroglu E, Hofmann NA, Bondarenko AI, Madl T, Waldeck-Weiermair M, Malli R, and Graier WF. PRMT1-mediated methylation of MICU1 determines the UCP2/3 dependency of mitochondrial Ca2+ uptake in immortalized cells. Nat Commun 7: 12897, 2016 PubMed PMC

Mailloux RJ, Adjeitey CNK, and Harper ME. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents. PLoS One 5: e13289, 2010 PubMed PMC

Mailloux RJ, Craig Ayre D, and Christian SL. Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase. Redox Biol 8: 285–297, 2016 PubMed PMC

Mailloux RJ, Dumouchel T, Aguer C, deKemp R, Beanlands R, and Harper ME. Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration. Biochem J 437: 301–311, 2011 PubMed

Mailloux RJ, Fu A, Robson-Doucette C, Allister EM, Wheeler MB, Screaton R, and Harper ME. Glutathionylation state of uncoupling protein-2 and the control of glucose-stimulated insulin secretion. J Biol Chem 287: 39673–39685, 2012 PubMed PMC

Mailloux RJ, Gardiner D, and O'Brien M. 2-Oxoglutarate dehydrogenase is a more significant source of O2•–/H2O2 than pyruvate dehydrogenase in cardiac and liver tissue. Free Radic Biol Med 97: 501–512, 2016 PubMed

Mailloux RJ. and Harper ME. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 51: 1106–1115, 2011 PubMed

Mailloux RJ, Seifert EL, Bouillaud F, Aguer C, Collins S, and Harper ME. Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3. J Biol Chem 286: 21865–21875, 2011 PubMed PMC

Malingriaux EA, Rupprecht A, Gille L, Jovanovic O, Ježek P, Jabůrek M, and Pohl EE. Fatty acids are key in 4-hydroxy-2-nonenal-mediated activation of uncoupling proteins 1 and 2. PLoS One 8: e77786, 2013 PubMed PMC

Mallilankaraman K, Cárdenas C, Doonan PJ, Chandramoorthy HC, Irrinki KM, Golenár T, Csordás G, Madireddi P, Yang J, Müller M, Miller R, Kolesar JE, Molgó J, Kaufman B, Hajnóczky G, Foskett JK, and Madesh M. MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat Cell Biol 14: 1336–1343, 2012 PubMed PMC

Marchissio MJ, Francés DEA, Carnovale CE, and Marinelli RA. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability. Toxicol Appl Pharmacol 264: 246–254, 2012 PubMed

Marin TL, Gongol B, Zhang F, Martin M, Johnson DA, Xiao H, Wang Y, Subramaniam S, Chien S, and Shyy JYJ. AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Sci Signal 10: eaaf7478, 2017 PubMed PMC

Marinho HS, Real C, Cyrne L, Soares H, and Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2: 535–562, 2014 PubMed PMC

Markevich NI. and Hoek JB. Computational modeling analysis of mitochondrial superoxide production under varying substrate conditions and upon inhibition of different segments of the electron transport chain. Biochim Biophys Acta 1847: 656–679, 2015 PubMed PMC

Martínez-Zamora A, Meseguer S, Esteve JM, Villarroya M, Aguado C, Enríquez JA, Knecht E, and Armengod ME. Defective expression of the mitochondrial-tRNA modifying enzyme GTPBP3 triggers AMPK-mediated adaptive responses involving Complex I assembly factors, uncoupling protein 2, and the mitochondrial pyruvate carrier. PLoS One 10: e0144273, 2015 PubMed PMC

Mattiasson G, Shamloo M, Gido G, Mathi K, Tomasevic G, Yi S, Warden CH, Castilho RF, Melcher T, Gonzalez-Zulueta M, Nikolich K, and Wieloch T. Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 9: 1062–1068, 2003 PubMed

McLeod CJ, Aziz A, Hoyt RF, McCoy JP, and Sack MN. Uncoupling proteins 2 and 3 function in concert to augment tolerance to cardiac ischemia. J Biol Chem 280: 33470–33476, 2005 PubMed

McLeod CJ, Jeyabalan AP, Minners JO, Clevenger R, Hoyt RF, and Sack MN. Delayed ischemic preconditioning activates nuclear-encoded electron-transfer-chain gene expression in parallel with enhanced postanoxic mitochondrial respiratory recovery. Circulation 110: 534–539, 2004 PubMed

McNelis JC. and Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity 41: 36–48, 2014 PubMed

Medraño-Fernandez I, Bestetti S, Bertolotti M, Bienert GP, Bottino C, Laforenza U, Rubartelli A, and Sitia R. Stress regulates aquaporin-8 permeability to impact cell growth and survival. Antioxid Redox Signal 24: 1031–1044, 2016 PubMed PMC

Medvedev AV, Robidoux J, Bai X, Cao W, Floering LM, Daniel KW, and Collins S. Regulation of the uncoupling protein-2 gene in INS-1 β-cells by oleic acid. J Biol Chem 277: 42639–42644, 2002 PubMed

Medvedev AV, Snedden SK, Raimbault S, Ricquier D, and Collins S. Transcriptional regulation of the mouse uncoupling protein-2 gene: double E-box motif is required for peroxisome proliferator-activated receptor-γ-dependent activation. J Biol Chem 276: 10817–10823, 2001 PubMed

Mehta MM, Weinberg SE, and Chandel NS. Mitochondrial control of immunity: beyond ATP. Nat Rev Immunol 17: 608–620, 2017 PubMed

Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, Tourlomousis P, Däbritz JHM, Gottlieb E, Latorre I, Corr SC, McManus G, Ryan D, Jacobs HT, Szibor M, Xavier RJ, Braun T, Frezza C, Murphy MP, and O'Neill LA. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167: 457–470, 2016 PubMed PMC

Mironova GD, Gateau-Roesch O, Levrat C, Gritsenko E, Pavlov E, Lazareva AV, Limarenko E, Rey C, Louisot P, and Saris NEL. Palmitic and stearic acids bind Ca2+ with high affinity and form nonspecific channels in black-lipid membranes. Possible relation to Ca2+-activated mitochondrial pores. J Bioenerg Biomembr 33: 319–331, 2001 PubMed

Modrianský M. and Gabrielová E. Uncouple my heart: the benefits of inefficiency. J Bioenerg Biomembr 41: 133–136, 2009 PubMed

Mogensen M, Sahlin K, Fernström M, Glintborg D, Vind BF, Beck-Nielsen H, and Højlund K. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56: 1592–1599, 2007 PubMed

Montesanto A, Crocco P, Anfossi M, Smirne N, Puccio G, Colao R, Maletta R, Passarino G, Bruni AC, and Rose G. The genetic variability of UCP4 affects the individual susceptibility to late-onset Alzheimer's disease and modifies the disease's risk in APOE-ε4 carriers. J Alzheimers Dis 51: 1265–1274, 2016 PubMed

Moon SH, Mancuso DJ, Sims HF, Liu X, Nguyen AL, Yang K, Guan S, Dilthey BG, Jenkins CM, Weinheimer CJ, Kovacs A, Abendschein D, and Gross RW. Cardiac myocyte-specific knock-out of calcium-independent phospholipase A2γ (iPLA2γ) decreases oxidized fatty acids during ischemia/reperfusion and reduces infarct size. J Biol Chem 291: 19687–19700, 2016 PubMed PMC

Motloch LJ, Gebing T, Reda S, Schwaiger A, Wolny M, and Hoppe UC. UCP3 regulates single-channel activity of the cardiac mCa1. J Membr Biol 249: 577–584, 2016 PubMed PMC

Motloch LJ, Larbig R, Gebing T, Reda S, Schwaiger A, Leitner J, Wolny M, Eckardt L, and Hoppe UC. By regulating mitochondrial Ca2+-uptake UCP2 modulates intracellular Ca2+. PLoS One 11: e0148359, 2016 PubMed PMC

Motloch LJ, Reda S, Wolny M, and Hoppe UC. UCP2 modulates cardioprotective effects of Ru360 in isolated cardiomyocytes during ischemia. Pharmaceuticals 8: 474–482, 2015 PubMed PMC

Murray AJ, Cole MA, Lygate CA, Carr CA, Stuckey DJ, Little SE, Neubauer S, and Clarke K. Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol 44: 694–700, 2008 PubMed

Nagai S, Ikeda K, Horie-Inoue K, Shiba S, Nagasawa S, Takeda S, and Inoue S. Estrogen modulates exercise endurance along with mitochondrial uncoupling protein 3 downregulation in skeletal muscle of female mice. Biochem Biophys Res Commun 480: 758–764, 2016 PubMed

Nègre-Salvayre A, Hirtz C, Carrera G, Cazenave R, Troly M, Salvayre R, Penicaud L, and Casteilla L. A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J 11: 809–815, 1997 PubMed

Nelson DR, Felix CM, and Swanson JM. Highly conserved charge-pair networks in the mitochondrial carrier family. J Mol Biol 277: 285–308, 1998 PubMed

Nicholls DG. Hamster brown‐adipose‐tissue mitochondria: the control of respiration and the proton electrochemical potential gradient by possible physiological effectors of the proton conductance of the inner membrane. Eur J Biochem 49: 573–583, 1974 PubMed

Nicholls DG. The physiological regulation of uncoupling proteins. Biochim Biophys Acta 1757: 459–466, 2006 PubMed

Nickel AG, Von Hardenberg A, Hohl M, Loffler JR, Kohlhaas M, Becker J, Reil JC, Kazakov A, Bonnekoh J, Stadelmaier M, Puhl SL, Wagner M, Bogeski I, Cortassa S, Kappl R, Pasieka B, Lafontaine M, Lancaster CRD, Blacker TS, Hall AR, Duchen MR, Kastner L, Lipp P, Zeller T, Muller C, Knopp A, Laufs U, Bohm M, Hoth M, and Maack C. Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab 22: 472–484, 2015 PubMed

Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 47: 469–484, 2009 PubMed

Niki E, Yoshida Y, Saito Y, and Noguchi N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 338: 668–676, 2005 PubMed

Nishikawa T. and Araki E. Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 9: 343–353, 2007 PubMed

Nishio K, Qiao S, and Yamashita H. Characterization of the differential expression of uncoupling protein 2 and ROS production in differentiated mouse macrophage-cells (Mm1) and the progenitor cells (M1). J Mol Histol 36: 35–44, 2005 PubMed

Normoyle KP, Kim M, Farahvar A, Llano D, Jackson K, and Wang H. The emerging neuroprotective role of mitochondrial uncoupling protein-2 in traumatic brain injury. Transl Neurosci 6: 179–186, 2015 PubMed PMC

Nowinski SM, Solmonson A, Rundhaug JE, Rho O, Cho J, Lago CU, Riley CL, Lee S, Kohno S, Dao CK, Nikawa T, Bratton SB, Wright CW, Fischer SM, DiGiovanni J, and Mills EM. Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to tumorigenesis. Nat Commun 6: 8137, 2015 PubMed PMC

O'Brien M, Chalker J, Slade L, Gardiner D, and Mailloux RJ. Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex. Free Radic Biol Med 106: 302–314, 2017 PubMed

Oberkofler H, Hafner M, Felder T, Krempler F, and Patsch W. Transcriptional co-activator peroxisome proliferator-activated receptor (PPAR)γ co-activator-1β is involved in the regulation of glucose-stimulated insulin secretion in INS-1E cells. J Mol Med 87: 299–306, 2009 PubMed

Oberkofler H, Klein K, Felder TK, Krempler F, and Patsch W. Role of peroxisome proliferator-activated receptor-γ coactivator-1α in the transcriptional regulation of the human uncoupling protein 2 gene in INS-1E cells. Endocrinology 147: 966–976, 2006 PubMed

Oleksiewicz U, Liloglou T, Tasopoulou KM, Daskoulidou N, Gosney JR, Field JK, and Xinarianos G. COL1A1, PRPF40A, and UCP2 correlate with hypoxia markers in non-small cell lung cancer. J Cancer Res Clin Oncol 143: 1133–1141, 2017 PubMed PMC

Ong SB, Kalkhoran SB, Hernández-Reséndiz S, Samangouei P, Ong SG, and Hausenloy DJ. Mitochondrial-shaping proteins in cardiac health and disease–the long and the short of it! Cardiovasc Drugs Ther 31: 87–107, 2017 PubMed PMC

Ooi EMM, Watts GF, Sprecher DL, Chan DC, and Barrett PHR. Mechanism of action of a peroxisome proliferator-activated receptor (PPAR)-δ agonist on lipoprotein metabolism in dyslipidemic subjects with central obesity. J Clin Endocrinol Metab 96: 1302–1310, 2011 PubMed

Osorio-Paz I, Uribe-Carvajal S, and Salceda R. In the early stages of diabetes, rat retinal mitochondria undergo mild uncoupling due to UCP2 activity. PLoS One 10: e0122727, 2015 PubMed PMC

Ostrowski J, Klimek-Tomczak K, Wyrwicz LS, Mikula M, Schullery DS, and Bomsztyk K. Heterogeneous nuclear ribonucleoprotein K enhances insulin-induced expression of mitochondrial UCP2 protein. J Biol Chem 279: 54599–54609, 2004 PubMed

Ozcan C, Palmeri M, Horvath TL, Russell KS, and Russell RR. Role of uncoupling protein 3 in ischemia-reperfusion injury, arrhythmias, and preconditioning. Am J Physiol Heart Circ Physiol 304: H1192–H1200, 2013 PubMed PMC

Palanisamy AP, Cheng G, Sutter AG, Evans ZP, Polito CC, Jin L, Liu J, Schmidt MG, and Chavin KD. Mitochondrial uncoupling protein 2 induces cell cycle arrest and necrotic cell death. Metab Syndr Relat Disord 12: 132–142, 2014 PubMed PMC

Palmieri F. Mitochondrial carrier proteins. FEBS Lett 346: 48–54, 1994 PubMed

Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 34: 465–484, 2013 PubMed

Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang C-Y, Xu C, Vianna CR, Balthasar N, Lee CE, Elmquist JK, Cowley MA, and Lowell BB. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449: 228–232, 2007 PubMed

Patterson AD, Shah YM, Matsubara T, Krausz KW, and Gonzalez FJ. Peroxisome proliferator-activated receptor alpha induction of uncoupling protein 2 protects against acetaminophen-induced liver toxicity. Hepatology 56: 281–290, 2012 PubMed PMC

Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trézéguet V, Lauquin GJM, and Brandolin G. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426: 39–44, 2003 PubMed

Pecqueur C, Alves-Guerra MC, Gelly C, Lévi-Meyrueis C, Couplan E, Collins S, Ricquier D, Bouillaud F, and Miroux B. Uncoupling Protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J Biol Chem 276: 8705–8712, 2001 PubMed

Pecqueur C, Cassard-Doulcier AM, Raimbault S, Miroux B, Fleury C, Gelly C, Bouillaud F, and Ricquier D. Functional organization of the human uncoupling protein-2 gene, and juxtaposition to the uncoupling protein-3 gene. Biochem Biophys Res Commun 255: 40–46, 1999 PubMed

Pernas L. and Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol 78: 505–531, 2016 PubMed

Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, and Mootha VK. MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467: 291–296, 2010 PubMed PMC

Perreten Lambert H, Zenger M, Azarias G, Chatton J-Y, Magistretti PJ, and Lengacher S. Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival. J Biol Chem 289: 31014–31028, 2014 PubMed PMC

Perrino C, Schiattarella GG, Sannino A, Pironti G, Petretta MP, Cannavo A, Gargiulo G, Ilardi F, Magliulo F, Franzone A, Carotenuto G, Serino F, Altobelli GG, Cimini V, Cuocolo A, Lombardi A, Goglia F, Indolfi C, Trimarco B, and Esposito G. Genetic deletion of uncoupling protein 3 exaggerates apoptotic cell death in the ischemic heart leading to heart failure. J Am Heart Assoc 2: e000086, 2013 PubMed PMC

Pfefferle A, Mailloux RJ, Adjeitey CNK, and Harper ME. Glutathionylation of UCP2 sensitizes drug resistant leukemia cells to chemotherapeutics. Biochim Biophys Acta 1833: 80–89, 2013 PubMed

Pi J, Bai Y, Daniel KW, Liu D, Lyght O, Edelstein D, Brownlee M, Corkey BE, and Collins S. Persistent oxidative stress due to absence of uncoupling protein 2 associated with impaired pancreatic β-cell function. Endocrinology 150: 3040–3048, 2009 PubMed PMC

Plecitá-Hlavatá L, Ježek J, and Ježek P. Aglycemia keeps mitochondrial oxidative phosphorylation under hypoxic conditions in HepG2 cells. J Bioenerg Biomembr 47: 467–476, 2015 PubMed

Plecitá-Hlavatá L. and Ježek P. Integration of superoxide formation and cristae morphology for mitochondrial redox signaling. Int J Biochem Cell Biol 80: 31–50, 2016 PubMed

Plecitá-Hlavatá L, Lessard M, Šantorová J, Bewersdorf J, and Ježek P. Mitochondrial oxidative phosphorylation and energetic status are reflected by morphology of mitochondrial network in INS-1E and HEP-G2 cells viewed by 4Pi microscopy. Biochim Biophys Acta 1777: 834–846, 2008 PubMed

Plecitá-Hlavatá L, Tauber J, Li M, Zhang H, Flockton AR, Pullamsetti SS, Chelladurai P, D'Alessandro A, El Kasmi KC, Ježek P, and Stenmark KR. Constitutive reprogramming of fibroblast mitochondrial metabolism in pulmonary hypertension. Am J Respir Cell Mol Biol 55: 47–57, 2016 PubMed PMC

Pons DG, Nadal-Serrano M, Torrens-Mas M, Valle A, Oliver J, and Roca P. UCP2 inhibition sensitizes breast cancer cells to therapeutic agents by increasing oxidative stress. Free Radic Biol Med 86: 67–77, 2015 PubMed

Pozzan T. and Rizzuto R. The renaissance of mitochondrial calcium transport. Eur J Biochem 267: 5269–5273, 2000 PubMed

Prentki M, Matschinsky FM, and Madiraju SRM. Metabolic signaling in fuel-induced insulin secretion. Cell Metab 18: 162–185, 2013 PubMed

Produit-Zengaffinen N, Davis-Lameloise N, Perreten H, Bécard D, Gjinovci A, Keller PA, Wollheim CB, Herrera P, Muzzin P, and Assimacopoulos-Jeannet F. Increasing uncoupling protein-2 in pancreatic beta cells does not alter glucose-induced insulin secretion but decreases production of reactive oxygen species. Diabetologia 50: 84–93, 2007 PubMed

Quinlan CL, Costa AD, Costa CL, Pierre S V, Dos Santos P, and Garlid KD. Conditioning the heart induces formation of signalosomes that interact with mitochondria to open mitoKATP channels. Am J Physiol Heart Circ Physiol 295: H953–H961, 2008 PubMed PMC

Quinlan CL, Gerencser AA, Treberg JR, and Brand MD. The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J Biol Chem 286: 31361–31372, 2011 PubMed PMC

Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, and Brand MD. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol 1: 304–312, 2013 PubMed PMC

Raffaello A, De Stefani D, Sabbadin D, Teardo E, Merli G, Picard A, Checchetto V, Moro S, Szabò I, and Rizzuto R. The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J 32: 2362–2376, 2013 PubMed PMC

Rajanbabu V, Galam L, Fukumoto J, Enciso J, Tadikonda P, Lane TN, Bandyopadhyay S, Parthasarathy PT, Cho Y, Cho SH, Lee YC, Lockey RF, and Kolliputi N. Genipin suppresses NLRP3 inflammasome activation through uncoupling protein-2. Cell Immunol 297: 40–45, 2015 PubMed PMC

Ramsden DB, Ho PWL, Ho JWM, Liu HF, So DHF, Tse HM, Chan KH, and Ho SL. Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction. Brain Behav 2: 468–478, 2012 PubMed PMC

Rathore R, Zheng YM, Niu CF, Liu QH, Korde A, Ho YS, and Wang YX. Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCɛ signaling axis in pulmonary artery smooth muscle cells. Free Radic Biol Med 45: 1223–1231, 2008 PubMed PMC

Reczek CR. and Chandel NS. ROS-dependent signal transduction. Curr Opin Cell Biol 33: 8–13, 2015 PubMed PMC

Rehman K. and Akash MSH. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci 23: 87, 2016 PubMed PMC

Reis AF, Dubois-Laforgue D, Bellanné-Chantelot C, Timsit J, and Velho G. A polymorphism in the promoter of UCP2 gene modulates lipid levels in patients with type 2 diabetes. Mol Genet Metab 82: 339–344, 2004 PubMed

Robinson AJ, Overy C, and Kunji ERS. The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc Natl Acad Sci U S A 105: 17766–17771, 2008 PubMed PMC

Robson-Doucette CA, Sultan S, Allister EM, Wikstrom JD, Koshkin V, Bhatacharjee A, Prentice KJ, Sereda SB, Shirihai OS, and Wheeler MB. β-cell uncoupling protein 2 regulates reactive oxygen species production, which influences both insulin and glucagon secretion. Diabetes 60: 2710–2719, 2011 PubMed PMC

Rodríguez-Calvo R, Vázquez-Carrera M, Masana L, and Neumann D. AICAR protects against high palmitate/high insulin-induced intramyocellular lipid accumulation and insulin resistance in HL-1 cardiac cells by inducing PPAR-target gene expression. PPAR Res 2015: 785783, 2015 PubMed PMC

Rousset S, Emre Y, Join-Lambert O, Hurtaud C, Ricquier D, and Cassard-Doulcier AM. The uncoupling protein 2 modulates the cytokine balance in innate immunity. Cytokine 35: 135–142, 2006 PubMed

Rousset S, Mozo J, Dujardin G, Emre Y, Masscheleyn S, Ricquier D, and Cassard-Doulcier AM. UCP2 is a mitochondrial transporter with an unusual very short half-life. FEBS Lett 581: 479–482, 2007 PubMed

Rubattu S, Bianchi F, Busceti CL, Cotugno M, Stanzione R, Marchitti S, Di Castro S, Madonna M, Nicoletti F, and Volpe M. Differential modulation of AMPK/PPARα/UCP2 axis in relation to hypertension and aging in the brain, kidneys and heart of two closely related spontaneously hypertensive rat strains. Oncotarget 6: 18800–18818, 2015 PubMed PMC

Ruiz-Ramirez A, Chavez-Salgado M, Peneda-Flores JA, Zapata E, Masso F, and El-Hafidi M. High-sucrose diet increases ROS generation, FFA accumulation, UCP2 level, and proton leak in liver mitochondria. AJP Endocrinol Metab 301: E1198–E1207, 2011 PubMed

Ruolan Z. Ghrelin suppresses inflammation in HUVECs by inhibiting ubiquitin-mediated uncoupling protein 2 degradation. Int J Mol Med 39: 1421–1427, 2017 PubMed PMC

Rupprecht A, Bräuer AU, Smorodchenko A, Goyn J, Hilse KE, Shabalina IG, Infante-Duarte C, and Pohl EE. Quantification of uncoupling protein 2 reveals its main expression in immune cells and selective up-regulation during T-cell proliferation. PLoS One 7: e41406, 2012 PubMed PMC

Rupprecht A, Sittner D, Smorodchenko A, Hilse KE, Goyn J, Moldzio R, Seiler AEM, Brauer AU, and Pohl EE. Uncoupling protein 2 and 4 expression pattern during stem cell differentiation provides new insight into their putative function. PLoS One 9: e88474, 2014 PubMed PMC

Rupprecht A, Sokolenko EA, Beck V, Ninnemann O, Jabůrek M, Trimbuch T, Klishin SS, Ježek P, Skulachev VP, and Pohl EE. Role of the transmembrane potential in the membrane proton leak. Biophys J 98: 1503–1511, 2010 PubMed PMC

Ruprecht JJ, Hellawell AM, Harding M, Crichton PG, McCoy AJ, and Kunji ERS. Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Proc Natl Acad Sci U S A 111: E426–E434, 2014 PubMed PMC

Rustin P. Mitochondria, from cell death to proliferation. Nat Genet 30: 352–353, 2002 PubMed

Rybin VO, Guo J, Sabri A, Elouardighi H, Schaefer E, and Steinberg SF. Stimulus-specific differences in protein kinase Cδ localization and activation mechanisms in cardiomyocytes. J Biol Chem 279: 19350–19361, 2004 PubMed

Safari F, Anvari Z, Moshtaghioun S, Javan M, Bayat G, Forosh SS, and Hekmatimoghaddam S. Differential expression of cardiac uncoupling proteins 2 and 3 in response to myocardial ischemia-reperfusion in rats. Life Sci 98: 68–74, 2014 PubMed

Saita S, Ishihara T, Maeda M, Iemura S, Natsume T, Mihara K, and Ishihara N. Distinct types of protease systems are involved in homeostasis regulation of mitochondrial morphology via balanced fusion and fission. Genes Cells 21: 408–424, 2016 PubMed

Sancak Y, Markhard AL, Kitami T, Kovacs-Bogdan E, Kamer KJ, Udeshi ND, Carr SA, Chaudhuri D, Clapham DE, Li AA, Calvo SE, Goldberger O, and Mootha VK. EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342: 1379–1382, 2013 PubMed PMC

Sasahara M, Nishi M, Kawashima H, Ueda K, Sakagashira S, Furuta H, Matsumoto E, Hanabusa T, Sasaki H, and Nanjo K. Uncoupling protein 2 promoter polymorphism-866G/A affects its expression in beta-cells and modulates clinical profiles of Japanese type 2 diabetic patients. Diabetes 53: 482–485, 2004 PubMed

Sayeed A, Meng Z, Luciani G, Chen LC, Bennington JL, and Dairkee SH. Negative regulation of UCP2 by TGFβ signaling characterizes low and intermediate-grade primary breast cancer. Cell Death Dis 1: e53, 2010 PubMed PMC

Schopfer FJ, Batthyany C, Baker PRS, Bonacci G, Cole MP, Rudolph V, Groeger AL, Rudolph TK, Nadtochiy S, Brookes PS, and Freeman BA. Detection and quantification of protein adduction by electrophilic fatty acids: mitochondrial generation of fatty acid nitroalkene derivatives. Free Radic Biol Med 46: 1250–1259, 2009 PubMed PMC

Schrepfer E. and Scorrano L. Mitofusins, from mitochondria to metabolism. Mol Cell 61: 683–694, 2016 PubMed

Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, Wang CR, Schumacker PT, Licht JD, Perlman H, Bryce PJ, and Chandel NS. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38: 225–236, 2013 PubMed PMC

Sesti G, Cardellini M, Marini MA, Frontoni S, D'Adamo M, Del Guerra S, Lauro D, De Nicolais P, Sbraccia P, Del Prato S, Gambardella S, Federici M, Marchetti P, and Lauro R. A common polymorphism in the promoter of UCP2 contributes to the variation in insulin secretion in glucose-tolerant subjects. Diabetes 52: 1280–1283, 2003 PubMed

Shabalina IG. and Nedergaard J. Mitochondrial (‘mild’) uncoupling and ROS production: physiologically relevant or not? Biochem Soc Trans 39: 1305–1309, 2011 PubMed

Shabalina IG, Petrovic N, Kramarova TV, Hoeks J, Cannon B, and Nedergaard J. UCP1 and defense against oxidative stress: 4-Hydroxy-2-nonenal effects on brown fat mitochondria are uncoupling protein 1-independent. J Biol Chem 281: 13882–13893, 2006 PubMed

Shimasaki Y, Pan N, Messina LM, Li C, Chen K, Liu L, Cooper MP, Vita JA, and Keaney JF. Uncoupling protein 2 impacts endothelial phenotype via p53-Mediated control of mitochondrial dynamics. Circ Res 113: 891–901, 2013 PubMed PMC

Sies H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem 289: 8735–8741, 2014 PubMed PMC

Skulachev VP. Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett 294: 158–162, 1991 PubMed

Skulachev VP. Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1363: 100–124, 1998 PubMed

Slade L, Chalker J, Kuksal N, Young A, Gardiner D, and Mailloux RJ. Examination of the superoxide/hydrogen peroxide forming and quenching potential of mouse liver mitochondria. Biochim Biophys Acta 1861: 1960–1969, 2017 PubMed

Smith KA, Waypa GB, and Schumacker PT. Redox signaling during hypoxia in mammalian cells. Redox Biol 13: 228–234, 2017 PubMed PMC

Smolková K. and Ježek P. The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells. Int J Cell Biol 2012: 273947, 2012 PubMed PMC

Smolková K, Plecitá-Hlavatá L, Bellance N, Benard G, Rossignol R, and Ježek P. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol 43: 950–968, 2011 PubMed

Smorodchenko A, Rupprecht A, Fuchs J, Gross J, and Pohl EE. Role of mitochondrial uncoupling protein 4 in rat inner ear. Mol Cell Neurosci 47: 244–253, 2011 PubMed

Smorodchenko A, Rupprecht A, Sarilova I, Ninnemann O, Brauer AU, Franke K, Schumacher S, Techritz S, Nitsch R, Schuelke M, and Pohl EE. Comparative analysis of uncoupling protein 4 distribution in various tissues under physiological conditions and during development. Biochim Biophys Acta 1788: 2309–2319, 2009 PubMed

Smorodchenko A, Schneider S, Rupprecht A, Hilse K, Sasgary S, Zeitz U, Erben RG, and Pohl EE. UCP2 up-regulation within the course of autoimmune encephalomyelitis correlates with T-lymphocyte activation. Biochim Biophys Acta 1863: 1002–1012, 2017 PubMed

Solanes G, Pedraza N, Calvo V, Vidal-Puig A, Lowell BB, and Villarroya F. Thyroid hormones directly activate the expression of the human and mouse uncoupling protein-3 genes through a thyroid response element in the proximal promoter region. Biochem J 386: 505–513, 2005 PubMed PMC

Solanes G, Pedraza N, Iglesias R, Giralt M, and Villarroya F. Functional relationship between MyoD and peroxisome proliferator-activated receptor-dependent regulatory pathways in the control of the human uncoupling protein-3 gene transcription. Mol Endocrinol 17: 1944–1958, 2003 PubMed

Starkov AA. and Fiskum G. Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem 86: 1101–1107, 2003 PubMed

Steen KA, Xu H, and Bernlohr DA. FABP4/aP2 regulates macrophage redox signaling and inflammasome activation via control of UCP2. Mol Cell Biol 37: e00282-16, 2017 PubMed PMC

St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB, and Spiegelman BM. Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells. J Biol Chem 278: 26597–26603, 2003 PubMed

Sun LL, Jiang BG, Li WT, Zou JJ, Shi YQ, and Liu ZM. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 91: 94–100, 2011 PubMed

Sun XL, Liu Y, Dai T, Ding JH, and Hu G. Uncoupling protein 2 knockout exacerbates depression-like behaviors in mice via enhancing inflammatory response. Neuroscience 192: 507–514, 2011 PubMed

Tagen M, Elorza A, Kempuraj D, Boucher W, Kepley CL, Shirihai OS, and Theoharides TC. Mitochondrial uncoupling protein 2 inhibits mast cell activation and reduces histamine content. J Immunol 183: 6313–6319, 2009 PubMed PMC

Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, Kim HS, Flynn CR, Hill S, McDonald WH, Olivier AK, Spitz DR, and Gius D. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40: 893–904, 2010 PubMed PMC

Tao R, Vassilopoulos A, Parisiadou L, Yan Y, and Gius D. Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis. Antioxid Redox Signal 20: 1646–1654, 2014 PubMed PMC

Teshima Y, Akao M, Jones SP, and Marbán E. Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res 93: 192–200, 2003 PubMed

Thangavel R, Kempuraj D, Zaheer S, Raikwar S, Ahmed ME, Selvakumar GP, Iyer SS, and Zaheer A. Glia maturation factor and mitochondrial uncoupling proteins 2 and 4 expression in the temporal cortex of Alzheimer's disease brain. Front Aging Neurosci 9: 150, 2017 PubMed PMC

Thompson MP. and Kim D. Links between fatty acids and expression of UCP2 and UCP3 mRNAs. FEBS Lett 568: 4–9, 2004 PubMed

Toda C, Kim JD, Impellizzeri D, Cuzzocrea S, Liu ZW, and Diano S. UCP2 regulates mitochondrial fission and ventromedial nucleus control of glucose responsiveness. Cell 164: 872–882, 2016 PubMed PMC

Toime LJ. and Brand MD. Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria. Free Radic Biol Med 49: 606–611, 2010 PubMed PMC

Torrens-Mas M, González-Hedström D, Abrisqueta M, Roca P, Oliver J, and Sastre-Serra J. PGC-1α in melanoma: a key factor for antioxidant response and mitochondrial function. J Cell Biochem 118: 4404–4413, 2017 PubMed

Traba J, Geiger SS, Kwarteng-Siaw M, Han K, Ra OH, Siegel RM, Gius D, and Sack MN. Prolonged fasting suppresses mitochondrial NLRP3 inflammasome assembly and activation via SIRT3-mediated activation of superoxide dismutase 2. J Biol Chem 292: 12153–12164, 2017 PubMed PMC

Treberg JR, Quinlan CL, and Brand MD. Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). J Biol Chem 286: 27103–27110, 2011 PubMed PMC

Trenker M, Malli R, Fertschai I, Levak-Frank S, and Graier WF. Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nat Cell Biol 9: 445–452, 2007 PubMed PMC

Tu N, Chen H, Winnikes U, Reinert I, Marmann G, Pirke KM, and Lentes KU. Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene. Life Sci 64: PL41–PL50, 1999 PubMed

Turner JD, Gaspers LD, Wang G, and Thomas AP. Uncoupling protein-2 modulates myocardial excitation-contraction coupling. Circ Res 106: 730–738, 2010 PubMed

Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 552: 335–344, 2003 PubMed PMC

Twig G, Elorza A, Molina AJA, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, and Shirihai OS. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27: 433–446, 2008 PubMed PMC

Urbánková E, Hanák P, Škobisová E, Růžička M, and Ježek P. Substitutional mutations in the uncoupling protein-specific sequences of mitochondrial uncoupling protein UCP1 lead to the reduction of fatty acid-induced H+ uniport. Int J Biochem Cell Biol 35: 212–220, 2003 PubMed

Urbánková E, Voltchenko A, Pohl P, Ježek P, and Pohl EE. Transport kinetics of uncoupling proteins: analysis of UCP1 reconstituted in planar lipid bilayers. J Biol Chem 278: 32497–32500, 2003 PubMed

Varela L, Schwartz ML, and Horvath TL. Mitochondria controlled by UCP2 determine hypoxia-induced synaptic remodeling in the cortex and hippocampus. Neurobiol Dis 90: 68–74, 2016 PubMed

Vatamaniuk MZ, Gupta RK, Lantz KA, Doliba NM, Matschinsky FM, and Kaestner KH. Foxa1-deficient mice exhibit impaired insulin secretion due to uncoupled oxidative phosphorylation. Diabetes 55: 2730–2736, 2006 PubMed

Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, Greaves DR, Murray PJ, and Chawla A. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab 4: 13–24, 2006 PubMed PMC

Vercesi AE, Borecký J, Maia I de G, Arruda P, Cuccovia IM, and Chaimovich H. Plant uncoupling mitochondrial proteins. Annu Rev Plant Biol 57: 383–404, 2006 PubMed

Vidal-Puig A, Solanes G, Grujic D, Flier JS, and Lowell BB. UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem Biophys Res Commun 235: 79–82, 1997 PubMed

Vidal-Puig AJ, Grujic D, Zhang CY, Hagen T, Boss O, Ido Y, Szczepanik A, Wade J, Mootha V, Cortright R, Muoio DM, and Lowell BB. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem 275: 16258–16266, 2000 PubMed

Villarroya F, Iglesias R, and Giralt M. PPARs in the control of uncoupling proteins gene expression. PPAR Res 2007: 1–12, 2007 PubMed PMC

Vogler S, Pahnke J, Rousset S, Ricquier D, Moch H, Miroux B, and Ibrahim SM. Uncoupling protein 2 has protective function during experimental autoimmune encephalomyelitis. Am J Pathol 168: 1570–1575, 2006 PubMed PMC

Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, Marmo R, Calcagnile VM, Palmieri L, Ricquier D, Paradies E, Scarcia P, Palmieri F, Bouillaud F, and Fiermonte G. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci U S A 111: 960–965, 2014 PubMed PMC

Wai T, Garcia-Prieto J, Baker MJ, Merkwirth C, Benit P, Rustin P, Ruperez FJ, Barbas C, Ibanez B, and Langer T. Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350: aad0116, 2015 PubMed

Waldeck-Weiermair M, Duan X, Naghdi S, Khan MJ, Trenker M, Malli R, and Graier WF. Uncoupling protein 3 adjusts mitochondrial Ca2+ uptake to high and low Ca2+ signals. Cell Calcium 48: 288–301, 2010 PubMed PMC

Waldeck-Weiermair M, Jean-Quartier C, Rost R, Khan MJ, Vishnu N, Bondarenko AI, Imamura H, Malli R, and Graier WF. Leucine zipper EF hand-containing transmembrane protein 1 (Letm1) and uncoupling proteins 2 and 3 (UCP2/3) contribute to two distinct mitochondrial Ca2+ uptake pathways. J Biol Chem 286: 28444–28455, 2011 PubMed PMC

Waldeck-Weiermair M, Malli R, Naghdi S, Trenker M, Kahn MJ, and Graier WF. The contribution of UCP2 and UCP3 to mitochondrial Ca2+ uptake is differentially determined by the source of supplied Ca2+. Cell Calcium 47: 433–440, 2010 PubMed

Walker JE. and Runswick MJ. The mitochondrial transport protein superfamily. J Bioenerg Biomembr 25: 435–446, 1993 PubMed

Wang D, Zhai X, Chen P, Yang M, Zhao J, Dong J, and Liu H. Hippocampal UCP2 is essential for cognition and resistance to anxiety but not required for the benefits of exercise. Neuroscience 277: 36–44, 2014 PubMed

Wang H, Chu WS, Lu T, Hasstedt SJ, Kern PA, and Elbein SC. Uncoupling protein-2 polymorphisms in type 2 diabetes, obesity, and insulin secretion. Am J Physiol Endocrinol Metab 286: E1–E7, 2004 PubMed

Wang M, Li G, Yang Z, Wang L, Zhang L, Wang T, Zhang Y, Zhang S, Han Y, and Jia L. Uncoupling protein 2 downregulation by hypoxia through repression of peroxisome proliferator-activated receptor γ promotes chemoresistance of non-small cell lung cancer. Oncotarget 8: 8083–8094, 2017 PubMed PMC

Wang Y, Huang L, Abdelrahim M, Cai Q, Truong A, Bick R, Poindexter B, and Sheikh-Hamad D. Stanniocalcin-1 suppresses superoxide generation in macrophages through induction of mitochondrial UCP2. J Leukoc Biol 86: 981–988, 2009 PubMed PMC

Watanabe S, Moniaga CS, Nielsen S, and Hara-Chikuma M. Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem Biophys Res Commun 471: 191–197, 2016 PubMed

Waypa GB, Smith KA, and Schumacker PT. O2 sensing, mitochondria and ROS signaling: the fog is lifting. Mol Aspects Med 47–48: 76–89, 2016 PubMed PMC

Weinberg SE, Sena LA, and Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity 42: 406–417, 2015 PubMed PMC

West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, and Ghosh S. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472: 476–480, 2011 PubMed PMC

Wikstrom JD, Mahdaviani K, Liesa M, Sereda SB, Si Y, Las G, Twig G, Petrovic N, Zingaretti C, Graham A, Cinti S, Corkey BE, Cannon B, Nedergaard J, and Shirihai OS. Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J 33: 418–436, 2014 PubMed PMC

Wing-Man Ho J, Wing-Lok Ho P, Liu HF, Hon-Fai So D, Chan KH, Ho-Man Tse Z, Hiu-Wai Kung M, Boyer Ramsden D, and Ho SL. UCP4 is a target effector of the NF-κB c-Rel prosurvival pathway against oxidative stress. Free Radic Biol Med 53: 383–394, 2012 PubMed

Winkler E. and Klingenberg M. Effect of fatty acids on H+ transport activity of the reconstituted uncoupling protein. J Biol Chem 269: 2508–2515, 1994 PubMed

Woyda-Ploszczyca AM. and Jarmuszkiewicz W. The conserved regulation of mitochondrial uncoupling proteins: from unicellular eukaryotes to mammals. Biochim Biophys Acta 1858: 21–33, 2017 PubMed

Wu X. and Gale PA. Small-molecule uncoupling protein mimics: synthetic anion receptors as fatty acid-activated proton transporters. J Am Chem Soc 138: 16508–16514, 2016 PubMed

Xiong S, Wang P, Ma L, Gao P, Gong L, Li L, Li Q, Sun F, Zhou X, He H, Chen J, Yan Z, Liu D, and Zhu Z. Ameliorating endothelial mitochondrial dysfunction restores coronary function via transient receptor potential vanilloid 1-mediated protein kinase A/uncoupling protein 2 pathway. Hypertension 67: 451–460, 2016 PubMed

Xu K, Zhang M, Cui D, Fu Y, Qian L, Gu R, Wang M, Shen C, Yu R, and Yang T. UCP2 −866G/A and Ala55Val, and UCP3 − 55C/T polymorphisms in association with type 2 diabetes susceptibility: a meta-analysis study. Diabetologia 54: 2315–2324, 2011 PubMed

Xu Y, Miriyala S, Fang F, Bakthavatchalu V, Noel T, Schell DM, Wang C, St Clair WH, and St Clair DK. Manganese superoxide dismutase deficiency triggers mitochondrial uncoupling and the Warburg effect. Oncogene 34: 4229–4237, 2015 PubMed PMC

Yamaguchi H, Jelokhani-Niaraki M, and Kodama H. Second transmembrane domain of human uncoupling protein 2 is essential for its anion channel formation. FEBS Lett 577: 299–304, 2004 PubMed

Yang Y, Yang Y, Hou J, Ding Y, Zhang T, Zhang Y, Wang J, Shi C, Fu W, and Cai Z. The hydroxyl at position C1 of genipin is the active inhibitory group that affects mitochondrial uncoupling protein 2 in Panc-1 cells. PLoS One 11: e0147026, 2016 PubMed PMC

Yin F, Sancheti H, and Cadenas E. Mitochondrial thiols in the regulation of cell death pathways. Antioxid Redox Signal 17: 1714–1727, 2012 PubMed PMC

Yoshitomi H, Yamazaki K, and Tanaka I. Cloning of mouse uncoupling protein 3 cDNA and 5′-flanking region, and its genetic map. Gene 215: 77–84, 1998 PubMed

Yu R, Liu T, Jin SB, Ning C, Lendahl U, Nistér M, and Zhao J. MIEF1/2 function as adaptors to recruit Drp1 to mitochondria and regulate the association of Drp1 with Mff. Sci Rep 7: 880, 2017 PubMed PMC

Yu SX, Du CT, Chen W, Lei QQ, Li N, Qi S, Zhang XJ, Hu GQ, Deng XM, Han WY, and Yang YJ. Genipin inhibits NLRP3 and NLRC4 inflammasome activation via autophagy suppression. Sci Rep 5: 17935, 2016 PubMed PMC

Yu XX, Mao W, Zhong A, Schow P, Brush J, Sherwood SW, Adams SH, and Pan G. Characterization of novel UCP5/BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation. FASEB J 14: 1611–1618, 2000 PubMed

Žáčková M, Škobisová E, Urbánková E, and Ježek P. Activating ω-6 polyunsaturated fatty acids and inhibitory purine nucleotides are high affinity ligands for novel mitochondrial uncoupling proteins UCP2 and UCP3. J Biol Chem 278: 20761–20769, 2003 PubMed

Zhang CY, Baffy G, Perret P, Krauss S, Peroni O, Grujic D, Hagen T, Vidal-Puig AJ, Boss O, Kim YB, Zheng XX, Wheeler MB, Shulman GI, Chan CB, and Lowell BB. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, β cell dysfunction, and type 2 diabetes. Cell 105: 745–755, 2001 PubMed

Zhang CY, Parton LE, Ye CP, Krauss S, Shen R, Lin CT, Porco JA, and Lowell BB. Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced β cell dysfunction in isolated pancreatic islets. Cell Metab 3: 417–427, 2006 PubMed

Zhang HJ, Zhao W, Venkataraman S, Robbins MEC, Buettner GR, Kregel KC, and Oberley LW. Activation of matrix metalloproteinase-2 by overexpression of manganese superoxide dismutase in human breast cancer MCF-7 cells involves reactive oxygen species. J Biol Chem 277: 20919–20926, 2002 PubMed

Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, Nuebel E, Wahjudi PN, Setoguchi K, Wang G, Do A, Jung HJ, McCaffery JM, Kurland IJ, Reue K, Lee WNP, Koehler CM, and Teitell MA. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 30: 4860–4873, 2011 PubMed PMC

Zhang K, Li H, and Song Z. Membrane depolarization activates the mitochondrial protease OMA1 by stimulating self-cleavage. EMBO Rep 15: 576–585, 2014 PubMed PMC

Zheng G, Lyu J, Liu S, Huang J, Liu C, Xiang D, Xie M, and Zeng Q. Silencing of uncoupling protein 2 by small interfering RNA aggravates mitochondrial dysfunction in cardiomyocytes under septic conditions. Int J Mol Med 35: 1525–1536, 2015 PubMed PMC

Zhou M, Xu A, Tam PKH, Lam KSL, Huang B, Liang Y, Lee IK, Wu D, and Wang Y. Upregulation of UCP2 by adiponectin: the involvement of mitochondrial superoxide and hnRNP K. PLoS One 7: e32349, 2012 PubMed PMC

Zhou Y, Cai T, Xu J, Jiang L, Wu J, Sun Q, Zen K, and Yang J. UCP2 attenuates apoptosis of tubular epithelial cells in renal ischemia/reperfusion injury. Am J Physiol Renal Physiol 313: 926–937, 2017 PubMed

Zhu R, Rupprecht A, Ebner A, Haselgrübler T, Gruber HJ, Hinterdorfer P, and Pohl EE. Mapping the nucleotide binding site of uncoupling protein 1 using atomic force microscopy. J Am Chem Soc 135: 3640–3646, 2013 PubMed PMC

Newest 20 citations...

See more in
Medvik | PubMed

Mitochondrial Physiology of Cellular Redox Regulations

. 2024 Aug 30 ; 73 (S1) : S217-S242. [epub] 20240422

Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology

. 2023 Oct ; 39 (10-12) : 635-683. [epub] 20230411

Pitfalls of Mitochondrial Redox Signaling Research

. 2023 Aug 31 ; 12 (9) : . [epub] 20230831

Antioxidant Role and Cardiolipin Remodeling by Redox-Activated Mitochondrial Ca2+-Independent Phospholipase A2γ in the Brain

. 2022 Jan 20 ; 11 (2) : . [epub] 20220120

Western Diet Decreases the Liver Mitochondrial Oxidative Flux of Succinate: Insight from a Murine NAFLD Model

. 2021 Jun 27 ; 22 (13) : . [epub] 20210627

Antioxidant Synergy of Mitochondrial Phospholipase PNPLA8/iPLA2γ with Fatty Acid-Conducting SLC25 Gene Family Transporters

. 2021 Apr 26 ; 10 (5) : . [epub] 20210426

Redox Homeostasis in Pancreatic β-Cells: From Development to Failure

. 2021 Mar 27 ; 10 (4) : . [epub] 20210327

ANT1 Activation and Inhibition Patterns Support the Fatty Acid Cycling Mechanism for Proton Transport

. 2021 Mar 02 ; 22 (5) : . [epub] 20210302

Molecular Dynamics Simulations of Mitochondrial Uncoupling Protein 2

. 2021 Jan 26 ; 22 (3) : . [epub] 20210126

Redox Signaling from Mitochondria: Signal Propagation and Its Targets

. 2020 Jan 06 ; 10 (1) : . [epub] 20200106

Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes

. 2019 Oct 01 ; 31 (10) : 722-751. [epub] 20190123

Potential of Mitochondria-Targeted Antioxidants to Prevent Oxidative Stress in Pancreatic β-cells

. 2019 ; 2019 () : 1826303. [epub] 20190521

Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity

. 2018 Jun 19 ; 23 (6) : . [epub] 20180619

Cytoprotective activity of mitochondrial uncoupling protein-2 in lung and spleen

. 2018 Apr ; 8 (4) : 692-701. [epub] 20180312

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...