Telomerase RNAs in land plants
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31392988
PubMed Central
PMC6765143
DOI
10.1093/nar/gkz695
PII: 5545009
Knihovny.cz E-zdroje
- MeSH
- Allium genetika MeSH
- Arabidopsis genetika MeSH
- chřestotvaré genetika MeSH
- fylogeneze * MeSH
- genom rostlinný genetika MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- RNA genetika MeSH
- telomerasa genetika MeSH
- telomery genetika MeSH
- vyšší rostliny genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA MeSH
- telomerasa MeSH
- telomerase RNA MeSH Prohlížeč
To elucidate the molecular nature of evolutionary changes of telomeres in the plant order Asparagales, we aimed to characterize telomerase RNA subunits (TRs) in these plants. The unusually long telomere repeat unit in Allium plants (12 nt) allowed us to identify TRs in transcriptomic data of representative species of the Allium genus. Orthologous TRs were then identified in Asparagales plants harbouring telomere DNA composed of TTAGGG (human type) or TTTAGGG (Arabidopsis-type) repeats. Further, we identified TRs across the land plant phylogeny, including common model plants, crop plants, and plants with unusual telomeres. Several lines of functional testing demonstrate the templating telomerase function of the identified TRs and disprove a functionality of the only previously reported plant telomerase RNA in Arabidopsis thaliana. Importantly, our results change the existing paradigm in plant telomere biology which has been based on the existence of a relatively conserved telomerase reverse transcriptase subunit (TERT) associating with highly divergent TRs even between closely related plant taxa. The finding of a monophyletic origin of genuine TRs across land plants opens the possibility to identify TRs directly in transcriptomic or genomic data and/or predict telomere sequences synthesized according to the respective TR template region.
Zobrazit více v PubMed
Greider C.W., Blackburn E.H.. Identification of a specific telomere terminal transferase-activity in tetrahymena extracts. Cell. 1985; 43:405–413. PubMed
Greider C.W., Blackburn E.H.. A telomeric sequence in the Rna of tetrahymena telomerase required for telomere repeat synthesis. Nature. 1989; 337:331–337. PubMed
Nguyen T.H.D., Tam J., Wu R.A., Greber B.J., Toso D., Nogales E., Collins K.. Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature. 2018; 557:190–195. PubMed PMC
Jiang J.S., Wang Y.Q., Susac L., Chan H., Basu R., Zhou Z.H., Feigon J.. Structure of telomerase with telomeric DNA. Cell. 2018; 173:1179–1190. PubMed PMC
Egan E.D., Collins K.. Biogenesis of telomerase ribonucleoproteins. RNA. 2012; 18:1747–1759. PubMed PMC
Chan H., Wang Y.Q., Feigon J.. Progress in human and tetrahymena telomerase structure determination. Annu. Rev. Biophys. 2017; 46:199–225. PubMed PMC
Musgrove C., Jansson L.I., Stone M.D.. New perspectives on telomerase RNA structure and function. Wiley Interdiscipl. Rev.-RNA. 2018; 9:e1456. PubMed PMC
Meyne J., Ratliff R.L., Moyzis R.K.. Conservation of the human telomere sequence (Ttaggg)N among vertebrates. Proc. Natl. Acad. Sci. U.S.A. 1989; 86:7049–7053. PubMed PMC
Cohn M., McEachern M.J., Blackburn E.H.. Telomeric sequence diversity within the genus Saccharomyces. Curr. Genet. 1998; 33:83–91. PubMed
Gunisova S., Elboher E., Nosek J., Gorkovoy V., Brown Y., Lucier J.F., Laterreur N., Wellinger R.J., Tzfati Y., Tomaska L.. Identification and comparative analysis of telomerase RNAs from Candida species reveal conservation of functional elements. RNA. 2009; 15:546–559. PubMed PMC
Fulneckova J., Hasikova T., Fajkus J., Lukesova A., Elias M., Sykorova E.. Dynamic evolution of telomeric sequences in the green algal order chlamydomonadales. Genome Biol. Evol. 2012; 4:248–264. PubMed PMC
Fulneckova J., Sevcikova T., Fajkus J., Lukesova A., Lukes M., Vlcek C., Lang B.F., Kim E., Elias M., Sykorova E.. A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes. Genome Biol. Evol. 2013; 5:468–483. PubMed PMC
Fajkus J., Sykorova E., Leitch A.R.. Telomeres in evolution and evolution of telomeres. Chromosome Res. 2005; 13:469–479. PubMed
Richards E.J., Ausubel F.M.. Isolation of a higher eukaryotic telomere from arabidopsis thaliana. Cell. 1988; 53:127–136. PubMed
Fuchs J., Brandes A., Schubert I.. Telomere sequence localization and karyotype evolution in higher-plants. Plant Syst. Evol. 1995; 196:227–241.
Pich U., Fuchs J., Schubert I.. How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences. Chromosome Res. 1996; 4:207–213. PubMed
Adams S.P., Hartman T.P.V., Lim K.Y., Chase M.W., Bennett M.D., Leitch I.J., Leitch A.R.. Loss and recovery of Arabidopsis-type telomere repeat sequences 5’-(TTTAGGG)(n)-3’ in the evolution of a major radiation of flowering plants. Proc. Natl. Acad. Sci. U.S.A. 2001; 268:1541–1546. PubMed PMC
Adams S.P., Leitch I.J., Bennett M.D., Leitch A.R.. Aloe L. - a second plant family without (TTTAGGG)(n) telomeres. Chromosoma. 2000; 109:201–205. PubMed
Weiss H., Scherthan H.. Aloe spp.–plants with vertebrate-like telomeric sequences. Chromosome Res. 2002; 10:155–164. PubMed
Sykorova E., Lim K.Y., Kunicka Z., Chase M.W., Bennett M.D., Fajkus J., Leitch A.R.. Telomere variability in the monocotyledonous plant order Asparagales. Proc. Roy.Soc. B-Biol. Sci. 2003; 270:1893–1904. PubMed PMC
Sykorova E., Lim K.Y., Fajkus J., Leitch A.R.. The signature of the Cestrum genome suggests an evolutionary response to the loss of (TTTAGGG)(n) telomeres. Chromosoma. 2003; 112:164–172. PubMed
Sykorova E., Lim K.Y., Chase M.W., Knapp S., Leitch I.J., Leitch A.R., Fajkus J.. The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. Plant J. 2003; 34:283–291. PubMed
Tran T.D., Cao H.X., Jovtchev G., Neumann P., Novak P., Fojtova M., Vu G.T.H., Macas J., Fajkus J., Schubert I. et al. .. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Plant J. 2015; 84:1087–1099. PubMed
Sykorova E., Fajkus J., Meznikova M., Lim K.Y., Neplechova K., Blattner F.R., Chase M.W., Leitch A.R.. Minisatellite telomeres occur in the family Alliaceae but are lost in Allium. Am. J. Bot. 2006; 93:814–823. PubMed
Fajkus P., Peska V., Sitova Z., Fulneckova J., Dvorackova M., Gogela R., Sykorova E., Hapala J., Fajkus J.. Allium telomeres unmasked: the unusual telomeric sequence (CTCGGTTATGGG)(n) is synthesized by telomerase. Plant J. 2016; 85:337–347. PubMed
Chakrabarti K., Pearson M., Grate L., Sterne-Weiler T., Deans J., Donohue J.P., Ares M.. Structural RNAs of known and unknown function identified in malaria parasites by comparative genomics and RNA analysis. RNA. 2007; 13:1923–1939. PubMed PMC
Podlevsky J.D., Chen J.J.L.. Evolutionary perspectives of telomerase RNA structure and function. Rna Biol. 2016; 13:720–732. PubMed PMC
Cifuentes-Rojas C., Kannan K., Tseng L., Shippen D.E.. Two RNA subunits and POT1a are components of Arabidopsis telomerase. Proc. Natl. Acad. Sci. U.S.A. 2011; 108:73–78. PubMed PMC
Sykorova E., Leitch A.R., Fajkus J.. Asparagales telomerases which synthesize the human type of telomeres. Plant Mol. Biol. 2006; 60:633–646. PubMed
Wu J., Okada T., Fukushima T., Tsudzuki T., Sugiura M., Yukawa Y.. A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis. RNA Biol. 2012; 9:302–313. PubMed
Brunaud V., Balzergue S., Dubreucq B., Aubourg S., Samson F., Chauvin S., Bechtold N., Cruaud C., DeRose R., Pelletier G. et al. .. T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep. 2002; 3:1152–1157. PubMed PMC
Alonso J.M., Stepanova A.N., Leisse T.J., Kim C.J., Chen H.M., Shinn P., Stevenson D.K., Zimmerman J., Barajas P., Cheuk R. et al. .. Genome-wide Insertional mutagenesis of Arabidopsis thaliana. Science. 2003; 301:653–657. PubMed
Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q. et al. .. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011; 29:644–652. PubMed PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.. Basic local alignment search tool. J. Mol. Biol. 1990; 215:403–410. PubMed
Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389–3402. PubMed PMC
Zhang Z., Schwartz S., Wagner L., Miller W.. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000; 7:203–214. PubMed
Wickett N.J., Mirarab S., Nguyen N., Warnow T., Carpenter E., Matasci N., Ayyampalayam S., Barker M.S., Burleigh J.G., Gitzendanner M.A. et al. .. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. U.S.A. 2014; 111:E4859–E4868. PubMed PMC
Xie Y.L., Wu G.X., Tang J.B., Luo R.B., Patterson J., Liu S.L., Huang W.H., He G.Z., Gu S.C., Li S.K. et al. .. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 2014; 30:1660–1666. PubMed
Matasci N., Hung L.H., Yan Z.X., Carpenter E.J., Wickett N.J., Mirarab S., Nguyen N., Warnow T., Ayyampalayam S., Barker M. et al. .. Data access for the 1,000 Plants (1KP) project. Gigascience. 2014; 3:17. PubMed PMC
Johnson M.T.J., Carpenter E.J., Tian Z.J., Bruskiewich R., Burris J.N., Carrigan C.T., Chase M.W., Clarke N.D., Covshoff S., dePamphilis C.W. et al. .. Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS One. 2012; 7:e50226. PubMed PMC
Katoh K., Misawa K., Kuma K., Miyata T.. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002; 30:3059–3066. PubMed PMC
Fitzgerald M.S., McKnight T.D., Shippen D.E.. Characterization and developmental patterns of telomerase expression in plants. Proc. Natl. Acad. Sci. U.S.A. 1996; 93:14422–14427. PubMed PMC
Fajkus J., Fulneckova J., Hulanova M., Berkova K., Riha K., Matyasek R.. Plant cells express telomerase activity upon transfer to callus culture, without extensively changing telomere lengths. Mol. Gen. Genet. 1998; 260:470–474. PubMed
Pfaffl M.W. Bustin SA. A-Z of Quantitative PCR. 2004; La Jolla: International University Line; 87–112.
Sykorova E., Fulneckova J., Mokros P., Fajkus J., Fojtova M., Peska V.. Three TERT genes in Nicotiana tabacum. Chromosome Res. 2012; 20:381–394. PubMed
Oguchi K., Liu H.T., Tamura K., Takahashi H.. Molecular cloning and characterization of AtTERT, a telomerase reverse transcriptase homolog in Arabidopsis thaliana. FEBS Lett. 1999; 457:465–469. PubMed
Shimada T.L., Shimada T., Hara-Nishimura I.. A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J. 2010; 61:519–528. PubMed
Richter J., Watson J.M., Stasnik P., Borowska M., Neuhold J., Berger M., Stolt-Bergner P., Schoft V., Hauser M.T.. Multiplex mutagenesis of four clustered CrRLK1L with CRISPR/Cas9 exposes their growth regulatory roles in response to metal ions. Sci. Rep.-UK. 2018; 8:12182. PubMed PMC
Ruckova E., Friml J., Schrumpfova P.P., Fajkus J.. Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants. Plant Mol. Biol. 2008; 66:637–646. PubMed
Lyčka M., Hapala J., Fajkus P., Fojtová M., Fajkus J., Peška V.. Foret F, Křenková J, Drobníková I, Klepárník K, Přikryl J. CECE 2018 - 15th International Interdisciplinary Meeting on Bioanalysis. 2018; Brno: Institute of Analytical Chemistry of the CAS, v. v. i; 82–86.
Regad F., Lebas M., Lescure B.. Interstitial telomeric repeats within the arabidopsis-thaliana genome. J. Mol. Biol. 1994; 239:163–169. PubMed
Tremousaygue D., Manevski A., Bardet C., Lescure N., Lescure B.. Plant interstitial telomere motifs participate in the control of gene expression in root meristems. Plant J. 1999; 20:553–561. PubMed
Peska V., Fajkus P., Fojtova M., Dvorackova M., Hapala J., Dvoracek V., Polanska P., Leitch A.R., Sykorova E., Fajkus J.. Characterisation of an unusual telomere motif (TTTTTTAGGG)(n) in the plant Cestrum elegans (Solanaceae), a species with a large genome. Plant J. 2015; 82:644–654. PubMed
Schrumpfova P.P., Fojtova M., Fajkus J.. Telomeres in plants and humans: not so different, not so similar. Cells. 2019; 8:E58. PubMed PMC
Schorova S., Fajkus J., Zaveska Drabkova L., Honys D., Schrumpfova P.P.. The plant Pontin and Reptin homologues, RuvBL1 and RuvBL2a, colocalize with TERT and TRB proteins in vivo, and participate in telomerase biogenesis. Plant J. 2019; 98:195–212. PubMed
Fajkus J., Kovarik A., Kralovics R.. Telomerase activity in plant cells. FEBS Lett. 1996; 391:307–309. PubMed
Beilstein M.A., Brinegar A.E., Shippen D.E.. Evolution of the Arabidopsis telomerase RNA. Front. Genet. 2012; 3:188. PubMed PMC
Ogrocka A., Sykorova E., Fajkus J., Fojtova M.. Developmental silencing of the AtTERT gene is associated with increased H3K27me3 loading and maintenance of its euchromatic environment. J. Exp. Bot. 2012; 63:4233–4241. PubMed PMC
Riha K., McKnight T.D., Griffing L.R., Shippen D.E.. Living with genome instability: Plant responses to telomere dysfunction. Science. 2001; 291:1797–1800. PubMed
Fojtova M., Peska V., Dobsakova Z., Mozgova I., Fajkus J., Sykorova E.. Molecular analysis of T-DNA insertion mutants identified putative regulatory elements in the AtTERT gene. J. Exp. Bot. 2011; 62:5531–5545. PubMed PMC
Crhak T., Zachova D., Fojtova M., Sykorova E.. The region upstream of the telomerase reverse transcriptase gene is essential for in planta telomerase complementation. Plant Sci. 2019; 281:41–51. PubMed
Derelle R., Torruella G., Klimes V., Brinkmann H., Kim E., Vlcek C., Lang B.F., Elias M.. Bacterial proteins pinpoint a single eukaryotic root. Proc. Natl. Acad. Sci. U.S.A. 2015; 112:E693–E699. PubMed PMC
He D., Fiz-Palacios O., Fu C.J., Fehling J., Tsai C.C., Baldauf S.L.. An alternative root for the eukaryote tree of life. Curr. Biol. 2014; 24:465–470. PubMed
Podlevsky J.D., Li Y., Chen J.J.L.. The functional requirement of two structural domains within telomerase RNA emerged early in eukaryotes. Nucleic Acids Res. 2016; 44:9891–9901. PubMed PMC
Orum H., Nielsen H., Engberg J.. Structural organization of the genes encoding the small nuclear Rnas U1 to U6 of tetrahymena-thermophila is very similar to that of plant small Nuclear-Rna genes. J. Mol. Biol. 1992; 227:114–121. PubMed
Koonin E.V. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate. Biol. Direct. 2006; 1:22. PubMed PMC
Samach A., Melamed-Bessudo C., Avivi-Ragolski N., Pietrokovski S., Levy A.A.. Identification of plant RAD52 homologs and characterization of the Arabidopsis thaliana RAD52-Like genes. Plant Cell. 2011; 23:4266–4279. PubMed PMC
Xu H.T., Nelson A.D.L., Shippen D.E.. A transposable element within the Non-canonical telomerase RNA of arabidopsis thaliana modulates telomerase in response to DNA damage. PLos Genet. 2015; 11:e1005281. PubMed PMC
Wu J., Liu C.X., Liu Z.G., Li S., Li D.D., Liu S.Y., Huang X.Q., Liu S.K., Yukawa Y.. Pol III-dependent cabbage BoNR8 long ncRNA affects seed germination and growth in Arabidopsis. Plant Cell Physiol. 2019; 60:421–435. PubMed
Characterisation of the Arabidopsis thaliana telomerase TERT-TR complex
TeloBase: a community-curated database of telomere sequences across the tree of life
Identification of the Sequence and the Length of Telomere DNA
Telomerase RNA in Hymenoptera (Insecta) switched to plant/ciliate-like biogenesis
GERONIMO: A tool for systematic retrieval of structural RNAs in a broad evolutionary context
Telomerase Interaction Partners-Insight from Plants
Editorial: Telomere Flexibility and Versatility: A Role of Telomeres in Adaptive Potential
Evolution of plant telomerase RNAs: farther to the past, deeper to the roots
Origin and Fates of TERT Gene Copies in Polyploid Plants
Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes
Origin, Diversity, and Evolution of Telomere Sequences in Plants