Wound healing: insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
39676864
PubMed Central
PMC11638159
DOI
10.3389/fimmu.2024.1403570
Knihovny.cz E-resources
- Keywords
- IL-6, cancer-associated fibroblasts, granulation tissue, myofibroblasts, wound healing,
- MeSH
- Autoimmunity * MeSH
- Wound Healing * immunology MeSH
- Interleukin-6 * metabolism immunology MeSH
- Humans MeSH
- Tumor Microenvironment * immunology MeSH
- Neoplasms * immunology metabolism pathology MeSH
- Aging * immunology MeSH
- Inflammation * immunology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Interleukin-6 * MeSH
Wound healing represents a complex and evolutionarily conserved process across vertebrates, encompassing a series of life-rescuing events. The healing process runs in three main phases: inflammation, proliferation, and maturation/remodelling. While acute inflammation is indispensable for cleansing the wound, removing infection, and eliminating dead tissue characterised by the prevalence of neutrophils, the proliferation phase is characterised by transition into the inflammatory cell profile, shifting towards the prevalence of macrophages. The proliferation phase involves development of granulation tissue, comprising fibroblasts, activated myofibroblasts, and inflammatory and endothelial cells. Communication among these cellular components occurs through intercellular contacts, extracellular matrix secretion, as well as paracrine production of bioactive factors and proteolytic enzymes. The proliferation phase of healing is intricately regulated by inflammation, particularly interleukin-6. Prolonged inflammation results in dysregulations during the granulation tissue formation and may lead to the development of chronic wounds or hypertrophic/keloid scars. Notably, pathological processes such as autoimmune chronic inflammation, organ fibrosis, the tumour microenvironment, and impaired repair following viral infections notably share morphological and functional similarities with granulation tissue. Consequently, wound healing emerges as a prototype for understanding these diverse pathological processes. The prospect of gaining a comprehensive understanding of wound healing holds the potential to furnish fundamental insights into modulation of the intricate dialogue between cancer cells and non-cancer cells within the cancer ecosystem. This knowledge may pave the way for innovative approaches to cancer diagnostics, disease monitoring, and anticancer therapy.
BIOCEV 1st Faculty of Medicine Charles University Vestec Czechia
Department of Pharmacognosy and Botany Faculty of Pharmacy Comenius University Bratislava Slovakia
Institute of Anatomy 1st Faculty of Medicine Charles University Prague Czechia
See more in PubMed
Shvedova M, Samdavid Thanapaul RJR, Thompson EL, Niedernhofer LJ, Roh DS. Cellular senescence in aging, tissue repair, and regeneration. Plast Reconstr Surg. (2022) 150:4S–11S. doi: 10.1097/PRS.0000000000009667 PubMed DOI PMC
Brivio P, Paladini MS, Racagni G, Riva MA, Calabrese F, Molteni R. From healthy aging to frailty: in search of the underlying mechanisms. Curr Med Chem. (2019) 26:3685–701. doi: 10.2174/0929867326666190717152739 PubMed DOI
Marengoni A, Angleman S, Melis R, Mangialasche F, Karp A, Garmen A, et al. . Aging with multimorbidity: A systematic review of the literature. Ageing Res Rev. (2011) 10:430–9. doi: 10.1016/j.arr.2011.03.003 PubMed DOI
Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. . Geroscience: linking aging to chronic disease. Cell. (2014) 159:709–13. doi: 10.1016/j.cell.2014.10.039 PubMed DOI PMC
Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. (1986) 315:1650–9. doi: 10.1056/NEJM198612253152606 PubMed DOI
Gal P, Brabek J, Holub M, Jakubek M, Sedo A, Lacina L, et al. . Autoimmunity, cancer and covid-19 abnormally activate wound healing pathways: critical role of inflammation. Histochem Cell Biol. (2022) 158:415–34. doi: 10.1007/s00418-022-02140-x PubMed DOI PMC
Novak S, Kolar M, Szabo A, Vernerova Z, Lacina L, Strnad H, et al. . Desmoplastic crosstalk in pancreatic ductal adenocarcinoma is reflected by different responses of panc-1, miapaca-2, patu-8902, and capan-2 cell lines to cancer-associated/normal fibroblasts. Cancer Genomics Proteomics. (2021) 18:221–43. doi: 10.21873/cgp.20254 PubMed DOI PMC
Coma M, Frohlichova L, Urban L, Zajicek R, Urban T, Szabo P, et al. . Molecular changes underlying hypertrophic scarring following burns involve specific deregulations at all wound healing stages (Inflammation, proliferation and maturation). Int J Mol Sci. (2021) 22:897. doi: 10.3390/ijms22020897 PubMed DOI PMC
Khalid KA, Nawi AFM, Zulkifli N, Barkat MA, Hadi H. Aging and wound healing of the skin: A review of clinical and pathophysiological hallmarks. Life (Basel). (2022) 12:2142. doi: 10.3390/life12122142 PubMed DOI PMC
Matijevic T, Talapko J, Mestrovic T, Matijevic M, Eric S, Eric I, et al. . Understanding the multifaceted etiopathogenesis of foot complications in individuals with diabetes. World J Clin cases. (2023) 11:1669–83. doi: 10.12998/wjcc.v11.i8.1669 PubMed DOI PMC
Patras L, Paul D, Matei IR. Weaving the nest: extracellular matrix roles in pre-metastatic niche formation. Front Oncol. (2023) 13:1163786. doi: 10.3389/fonc.2023.1163786 PubMed DOI PMC
Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. (2012) 49:35–43. doi: 10.1159/000339613 PubMed DOI
Ellis S, Lin EJ, Tartar D. Immunology of wound healing. Curr Dermatol Rep. (2018) 7:350–8. doi: 10.1007/s13671-018-0234-9 PubMed DOI PMC
de Oliveira S, Rosowski EE, Huttenlocher A. Neutrophil migration in infection and wound repair: going forward in reverse. Nat Rev Immunol. (2016) 16:378–91. doi: 10.1038/nri.2016.49 PubMed DOI PMC
Wilgus TA, Wulff BC. The importance of mast cells in dermal scarring. Adv Wound Care (New Rochelle). (2014) 3:356–65. doi: 10.1089/wound.2013.0457 PubMed DOI PMC
Landen NX, Li D, Stahle M. Transition from inflammation to proliferation: A critical step during wound healing. Cell Mol Life Sci. (2016) 73:3861–85. doi: 10.1007/s00018-016-2268-0 PubMed DOI PMC
Avazi DO, Awasum AC, Hassan AZ, Ayo JO, Aluwong T, Muhammed ST, et al. . Evaluation of levels of interleukin-6, interleukin-8 and some haematologic parameters of dogs with cutaneous wounds. Cytokine. (2019) 113:128–38. doi: 10.1016/j.cyto.2018.06.024 PubMed DOI
Adamik B, Zimecki M, Wlaszczyk A, Kubler A. Immunological status of septic and trauma patients. I. High tumor necrosis factor alpha serum levels in septic and trauma patients are not responsible for increased mortality; a prognostic value of serum interleukin 6. Arch Immunol Ther Exp (Warsz). (1997) 45:169–75. PubMed
Wokalek H, Ruh H. Time course of wound healing. J Biomater Appl. (1991) 5:337–62. doi: 10.1177/088532829100500405 PubMed DOI
Tracy LE, Minasian RA, Caterson EJ. Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care (New Rochelle). (2016) 5:119–36. doi: 10.1089/wound.2014.0561 PubMed DOI PMC
Vorstandlechner V, Laggner M, Kalinina P, Haslik W, Radtke C, Shaw L, et al. . Deciphering the functional heterogeneity of skin fibroblasts using single-cell rna sequencing. FASEB J. (2020) 34:3677–92. doi: 10.1096/fj.201902001RR PubMed DOI
Griffin MF, desJardins-Park HE, Mascharak S, Borrelli MR, Longaker MT. Understanding the impact of fibroblast heterogeneity on skin fibrosis. Dis Model Mech. (2020) 13:dmm044164. doi: 10.1242/dmm.044164 PubMed DOI PMC
Wong CE, Paratore C, Dours-Zimmermann MT, Rochat A, Pietri T, Suter U, et al. . Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J Cell Biol. (2006) 175:1005–15. doi: 10.1083/jcb.200606062 PubMed DOI PMC
Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. (2009) 139:871–90. doi: 10.1016/j.cell.2009.11.007 PubMed DOI
Li H, Yao Z, He W, Gao H, Bai Y, Yang S, et al. . P311 induces the transdifferentiation of epidermal stem cells to myofibroblast-like cells by stimulating transforming growth factor B1 expression. Stem Cell Res Ther. (2016) 7:175. doi: 10.1186/s13287-016-0421-1 PubMed DOI PMC
Saikia P, Crabb JS, Dibbin LL, Juszczak MJ, Willard B, Jang GF, et al. . Quantitative proteomic comparison of myofibroblasts derived from bone marrow and cornea. Sci Rep. (2020) 10:16717. doi: 10.1038/s41598-020-73686-w PubMed DOI PMC
Quan TE, Cowper SE, Bucala R. The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep. (2006) 8:145–50. doi: 10.1007/s11926-006-0055-x PubMed DOI
Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (Endomt) in the pathogenesis of fibrotic disorders. Am J Pathol. (2011) 179:1074–80. doi: 10.1016/j.ajpath.2011.06.001 PubMed DOI PMC
Hinz B. The role of myofibroblasts in wound healing. Curr Res Transl Med. (2016) 64:171–7. doi: 10.1016/j.retram.2016.09.003 PubMed DOI
Chitturi RT, Balasubramaniam AM, Parameswar RA, Kesavan G, Haris KT, Mohideen K. The role of myofibroblasts in wound healing, contraction and its clinical implications in cleft palate repair. J Int Oral health: JIOH. (2015) 7:75–80. PubMed PMC
Bonner JC, Badgett A, Osornio-Vargas AR, Hoffman M, Brody AR. Pdgf-stimulated fibroblast proliferation is enhanced synergistically by receptor-recognized alpha 2-macroglobulin. J Cell Physiol. (1990) 145:1–8. doi: 10.1002/jcp.1041450102 PubMed DOI
Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. (1993) 122:103–11. doi: 10.1083/jcb.122.1.103 PubMed DOI PMC
Grazul-Bilska AT, Luthra G, Reynolds LP, Bilski JJ, Johnson ML, Adbullah SA, et al. . Effects of basic fibroblast growth factor (Fgf-2) on proliferation of human skin fibroblasts in type ii diabetes mellitus. Exp Clin Endocrinol Diabetes. (2002) 110:176–81. doi: 10.1055/s-2002-32149 PubMed DOI
Dvořánková B, Szabo P, Lacina L, Gal P, Uhrova J, Zima T, et al. . Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: potential application in tissue engineering and wound repair. Cells Tissues Organs. (2011) 194:469–80. doi: 10.1159/000324864 PubMed DOI
Hung CF, Rohani MG, Lee SS, Chen P, Schnapp LM. Role of igf-1 pathway in lung fibroblast activation. Respir Res. (2013) 14:102. doi: 10.1186/1465-9921-14-102 PubMed DOI PMC
Evans RA, Tian YC, Steadman R, Phillips AO. Tgf-beta1-mediated fibroblast-myofibroblast terminal differentiation-the role of smad proteins. Exp Cell Res. (2003) 282:90–100. doi: 10.1016/s0014-4827(02)00015-0 PubMed DOI
Shi Z, Yao C, Shui Y, Li S, Yan H. Research progress on the mechanism of angiogenesis in wound repair and regeneration. Front Physiol. (2023) 14:1284981. doi: 10.3389/fphys.2023.1284981 PubMed DOI PMC
Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marmé D. Migration of human monocytes in response to vascular endothelial growth factor (Vegf) is mediated via the vegf receptor flt-1. Blood. (1996) 87:3336–43. doi: 10.1182/blood.V87.8.3336.bloodjournal8783336 PubMed DOI
Santoro MM, Gaudino G. Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp Cell Res. (2005) 304:274–86. doi: 10.1016/j.yexcr.2004.10.033 PubMed DOI
Vu R, Dragan M, Sun P, Werner S, Dai X. Epithelial-mesenchymal plasticity and endothelial-mesenchymal transition in cutaneous wound healing. Cold Spring Harbor Perspect Biol. (2023) 15:a041237. doi: 10.1101/cshperspect.a041237 PubMed DOI PMC
Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol. (2007) 127:998–1008. doi: 10.1038/sj.jid.5700786 PubMed DOI
Gill SE, Parks WC. Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol. (2008) 40:1334–47. doi: 10.1016/j.biocel.2007.10.024 PubMed DOI PMC
Rohani MG, Parks WC. Matrix remodeling by mmps during wound repair. Matrix Biol. (2015) 44-46:113–21. doi: 10.1016/j.matbio.2015.03.002 PubMed DOI
Barnes LA, Marshall CD, Leavitt T, Hu MS, Moore AL, Gonzalez JG, et al. . Mechanical forces in cutaneous wound healing: emerging therapies to minimize scar formation. Adv Wound Care (New Rochelle). (2018) 7:47–56. doi: 10.1089/wound.2016.0709 PubMed DOI PMC
Krejčí E, Kodet O, Szabo P, Borský J, Smetana K, Jr., Grim M, et al. . In vitro differences of neonatal and later postnatal keratinocytes and dermal fibroblasts. Physiol Res. (2015) 64:561–9. doi: 10.33549/physiolres.932893 PubMed DOI
Mateu R, Živicová V, Krejčí ED, Grim M, Strnad H, Vlček Č, et al. . Functional differences between neonatal and adult fibroblasts and keratinocytes: donor age affects epithelial-mesenchymal crosstalk in vitro . Int J Mol Med. (2016) 38:1063–74. doi: 10.3892/ijmm.2016.2706 PubMed DOI PMC
Živicová V, Lacina L, Mateu R, Smetana K, Jr., Kavková R, Drobná Krejčí E, et al. . Analysis of dermal fibroblasts isolated from neonatal and child cleft lip and adult skin: developmental implications on reconstructive surgery. Int J Mol Med. (2017) 40:1323–34. doi: 10.3892/ijmm.2017.3128 PubMed DOI PMC
Tan S, Khumalo N, Bayat A. Understanding keloid pathobiology from a quasi-neoplastic perspective: less of a scar and more of a chronic inflammatory disease with cancer-like tendencies. Front Immunol. (2019) 10:1810. doi: 10.3389/fimmu.2019.01810 PubMed DOI PMC
Ogawa R. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int J Mol Sci. (2017) 18:606. doi: 10.3390/ijms18030606 PubMed DOI PMC
Louw L. Keloids in rural black South Africans. Part 1: general overview and essential fatty acid hypotheses for keloid formation and prevention. Prostaglandins leukotrienes essential Fatty Acids. (2000) 63:237–45. doi: 10.1054/plef.2000.0207 PubMed DOI
Nyika DT, Khumalo NP, Bayat A. Genetics and epigenetics of keloids. Adv Wound Care (New Rochelle). (2022) 11:192–201. doi: 10.1089/wound.2021.0094 PubMed DOI
Ud-Din S, Bayat A. Keloid scarring or disease: unresolved quasi-neoplastic tendencies in the human skin. Wound Repair Regener. (2020) 28:422–6. doi: 10.1111/wrr.12793 PubMed DOI
Ud-Din S, Bayat A. Controlling inflammation pre-emptively or at the time of cutaneous injury optimises outcome of skin scarring. Front Immunol. (2022) 13:883239. doi: 10.3389/fimmu.2022.883239 PubMed DOI PMC
Bell RE, Shaw TJ. Keloid tissue analysis discredits a role for myofibroblasts in disease pathogenesis. Wound Repair Regener. (2021) 29:637–41. doi: 10.1111/wrr.12923 PubMed DOI
Zhang M, Chen H, Qian H, Wang C. Characterization of the skin keloid microenvironment. Cell Commun Signal. (2023) 21:207. doi: 10.1186/s12964-023-01214-0 PubMed DOI PMC
Yin H, Liu N, Zhou X, Chen J, Duan L. The advance of ccn3 in fibrosis. J Cell Commun Signal. (2023) 17:1219–27. doi: 10.1007/s12079-023-00778-3 PubMed DOI PMC
Rosendahl AH, Schönborn K, Krieg T. Pathophysiology of systemic sclerosis (Scleroderma). Kaohsiung J Med Sci. (2022) 38:187–95. doi: 10.1002/kjm2.12505 PubMed DOI
Brábek J, Jakubek M, Vellieux F, Novotný J, Kolář M, Lacina L, et al. . Interleukin-6: molecule in the intersection of cancer, ageing and covid-19. Int J Mol Sci. (2020) 21:7937. doi: 10.3390/ijms21217937 PubMed DOI PMC
Krygier A, Szmajda-Krygier D, Świechowski R, Pietrzak J, Wosiak A, Wodziński D, et al. . Molecular pathogenesis of fibrosis, thrombosis and surfactant dysfunction in the lungs of severe covid-19 patients. Biomolecules. (2022) 12:1845. doi: 10.3390/biom12121845 PubMed DOI PMC
Arturi F, Melegari G, Giansante A, Giuliani E, Bertellini E, Barbieri A. Covid-19 biomarkers for critically ill patients: A compendium for the physician. Neurol Int. (2023) 15:881–95. doi: 10.3390/neurolint15030056 PubMed DOI PMC
Peng R, Yang T, Tong Y, Wang J, Zhou H, Yang M, et al. . Efficacy and safety of interleukin-6 receptor antagonists in adult patients admitted to intensive care unit with covid-19: A systematic review and meta-analysis of randomized controlled trials. Prev Med Rep. (2023) 34:102276. doi: 10.1016/j.pmedr.2023.102276 PubMed DOI PMC
Bale S, Verma P, Yalavarthi B, Scarneo SA, Hughes P, Amin MA, et al. . Pharmacological inhibition of tak1 prevents and induces regression of experimental organ fibrosis. JCI Insight. (2023) 8:e165358. doi: 10.1172/jci.insight.165358 PubMed DOI PMC
Zhang QY, Ye XP, Zhou Z, Zhu CF, Li R, Fang Y, et al. . Lymphocyte infiltration and thyrocyte destruction are driven by stromal and immune cell components in hashimoto's thyroiditis. Nat Commun. (2022) 13:775. doi: 10.1038/s41467-022-28120-2 PubMed DOI PMC
Alves NRM, Kurizky PS, da Mota LMH, de Albuquerque CP, Esper JT, Campos ASC, et al. . Elevated serum il-6 levels predict treatment interruption in patients with moderate to severe psoriasis: A 6-year real-world cohort study. Anais brasileiros dermatologia. (2023) 99:34–42. doi: 10.1016/j.abd.2023.03.002 PubMed DOI PMC
Piroozmand A, Zamani B, Haddad Kashani H, Amini Mahabadi J. Serum interleukin-6 level and its association with pulmonary involvement in progressive systemic sclerosis; a case-control study. Clin Mol allergy: CMA. (2023) 21:7. doi: 10.1186/s12948-023-00188-1 PubMed DOI PMC
Cannon A, Thompson CM, Bhatia R, Armstrong KA, Solheim JC, Kumar S, et al. . Molecular mechanisms of pancreatic myofibroblast activation in chronic pancreatitis and pancreatic ductal adenocarcinoma. J Gastroenterol. (2021) 56:689–703. doi: 10.1007/s00535-021-01800-4 PubMed DOI PMC
Mandys V, Popov A, Gürlich R, Havránek J, Pfeiferová L, Kolář M, et al. . Expression of selected mirnas in normal and cancer-associated fibroblasts and in bxpc3 and mia paca-2 cell lines of pancreatic ductal adenocarcinoma. Int J Mol Sci. (2023) 24:3617. doi: 10.3390/ijms24043617 PubMed DOI PMC
van Caam A, Vonk M, van den Hoogen F, van Lent P, van der Kraan P. Unraveling ssc pathophysiology; the myofibroblast. Front Immunol. (2018) 9:2452. doi: 10.3389/fimmu.2018.02452 PubMed DOI PMC
Van Praet JT, Smith V, Haspeslagh M, Degryse N, Elewaut D, De Keyser F. Histopathological cutaneous alterations in systemic sclerosis: A clinicopathological study. Arthritis Res Ther. (2011) 13:R35. doi: 10.1186/ar3267 PubMed DOI PMC
Ferreli C, Gasparini G, Parodi A, Cozzani E, Rongioletti F, Atzori L. Cutaneous manifestations of scleroderma and scleroderma-like disorders: A comprehensive review. Clin Rev Allergy Immunol. (2017) 53:306–36. doi: 10.1007/s12016-017-8625-4 PubMed DOI
Ramirez AM, Shen Z, Ritzenthaler JD, Roman J. Myofibroblast transdifferentiation in obliterative bronchiolitis: tgf-beta signaling through smad3-dependent and -independent pathways. Am J Transplant. (2006) 6:2080–8. doi: 10.1111/j.1600-6143.2006.01430.x PubMed DOI
Distler O, Assassi S, Cottin V, Cutolo M, Danoff SK, Denton CP, et al. . Predictors of progression in systemic sclerosis patients with interstitial lung disease. Eur Respir J. (2020) 55:1902026. doi: 10.1183/13993003.02026-2019 PubMed DOI PMC
Streets AJ, Prosseda PP, Ong AC. Polycystin-1 regulates arhgap35-dependent centrosomal rhoa activation and rock signaling. JCI Insight. (2020) 5:e135385. doi: 10.1172/jci.insight.135385 PubMed DOI PMC
Schuster R, Rockel JS, Kapoor M, Hinz B. The inflammatory speech of fibroblasts. Immunol Rev. (2021) 302:126–46. doi: 10.1111/imr.12971 PubMed DOI
Jarlborg M, Gabay C. Systemic effects of il-6 blockade in rheumatoid arthritis beyond the joints. Cytokine. (2022) 149:155742. doi: 10.1016/j.cyto.2021.155742 PubMed DOI
Mehta P, Cron RQ, Hartwell J, Manson JJ, Tattersall RS. Silencing the cytokine storm: the use of intravenous anakinra in haemophagocytic lymphohistiocytosis or macrophage activation syndrome. Lancet Rheumatol. (2020) 2:e358–e67. doi: 10.1016/s2665-9913(20)30096-5 PubMed DOI PMC
Yip RML, Yim CW. Role of interleukin 6 inhibitors in the management of rheumatoid arthritis. J Clin rheumatology: Pract Rep rheumatic musculoskeletal Dis. (2021) 27:e516–e24. doi: 10.1097/rhu.0000000000001293 PubMed DOI PMC
Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, et al. . Proinflammatory cytokines, aging, and age-related diseases. J Am Med Directors Assoc. (2013) 14:877–82. doi: 10.1016/j.jamda.2013.05.009 PubMed DOI
Giovannini S, Onder G, Liperoti R, Russo A, Carter C, Capoluongo E, et al. . Interleukin-6, C-reactive protein, and tumor necrosis factor-alpha as predictors of mortality in frail, community-living elderly individuals. J Am Geriatr Soc. (2011) 59:1679–85. doi: 10.1111/j.1532-5415.2011.03570.x PubMed DOI PMC
Xiao T, Yan Z, Xiao S, Xia Y. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization. Stem Cell Res Ther. (2020) 11:232. doi: 10.1186/s13287-020-01755-y PubMed DOI PMC
Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, et al. . An essential role for senescent cells in optimal wound healing through secretion of pdgf-aa. Dev Cell. (2014) 31:722–33. doi: 10.1016/j.devcel.2014.11.012 PubMed DOI PMC
Chia CW, Sherman-Baust CA, Larson SA, Pandey R, Withers R, Karikkineth AC, et al. . Age-associated expression of P21and P53 during human wound healing. Aging Cell. (2021) 20:e13354. doi: 10.1111/acel.13354 PubMed DOI PMC
Jiang D, de Vries JC, Muschhammer J, Schatz S, Ye H, Hein T, et al. . Local and transient inhibition of P21 expression ameliorates age-related delayed wound healing. Wound Repair Regener. (2020) 28:49–60. doi: 10.1111/wrr.12763 PubMed DOI
Pulido T, Velarde MC, Alimirah F. The senescence-associated secretory phenotype: fueling a wound that never heals. Mech Ageing Dev. (2021) 199:111561. doi: 10.1016/j.mad.2021.111561 PubMed DOI
Blazić TM, Brajac I. Defective induction of senescence during wound healing is a possible mechanism of keloid formation. Med Hypotheses. (2006) 66:649–52. doi: 10.1016/j.mehy.2005.09.033 PubMed DOI
Jun JI, Lau LF. The matricellular protein ccn1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol. (2010) 12:676–85. doi: 10.1038/ncb2070 PubMed DOI PMC
Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. (2010) 18:884–901. doi: 10.1016/j.devcel.2010.05.012 PubMed DOI PMC
Oey O, Sunjaya AF, Khan Y, Redfern A. Stromal inflammation, fibrosis and cancer: an old intuition with promising potential. World J Clin Oncol. (2023) 14:230–46. doi: 10.5306/wjco.v14.i7.230 PubMed DOI PMC
Mustafa S, Koran S, AlOmair L. Insights into the role of matrix metalloproteinases in cancer and its various therapeutic aspects: A review. Front Mol Biosci. (2022) 9:896099. doi: 10.3389/fmolb.2022.896099 PubMed DOI PMC
Budi HS, Farhood B. Targeting oral tumor microenvironment for effective therapy. Cancer Cell Int. (2023) 23:101. doi: 10.1186/s12935-023-02943-5 PubMed DOI PMC
Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal transduction targeted Ther. (2023) 8:320. doi: 10.1038/s41392-023-01522-4 PubMed DOI PMC
Thakur S, Haider S, Natrajan R. Implications of tumour heterogeneity on cancer evolution and therapy resistance: lessons from breast cancer. J Pathol. (2023) 260:621–36. doi: 10.1002/path.6158 PubMed DOI
Kavan S, Kruse TA, Vogsen M, Hildebrandt MG, Thomassen M. Heterogeneity and tumor evolution reflected in liquid biopsy in metastatic breast cancer patients: A review. Cancer metastasis Rev. (2022) 41:433–46. doi: 10.1007/s10555-022-10023-9 PubMed DOI
Che J, Yu S. Ecological niches for colorectal cancer stem cell survival and thrival. Front Oncol. (2023) 13:1135364. doi: 10.3389/fonc.2023.1135364 PubMed DOI PMC
Zhou H, Tan L, Liu B, Guan XY. Cancer stem cells: recent insights and therapies. Biochem Pharmacol. (2023) 209:115441. doi: 10.1016/j.bcp.2023.115441 PubMed DOI
Lacina L, Coma M, Dvorankova B, Kodet O, Melegova N, Gal P, et al. . Evolution of cancer progression in the context of darwinism. Anticancer Res. (2019) 39:1–16. doi: 10.21873/anticanres.13074 PubMed DOI
Lacina L, Kodet O, Dvořánková B, Szabo P, Smetana K, Jr. Ecology of melanoma cell. Histol Histopathol. (2018) 33:247–54. doi: 10.14670/hh-11-926 PubMed DOI
Storz P. Roles of differently polarized macrophages in the initiation and progressionof pancreatic cancer. Front Immunol. (2023) 14:1237711. doi: 10.3389/fimmu.2023.1237711 PubMed DOI PMC
Xue J, Sharma V, Hsieh MH, Chawla A, Murali R, Pandol SJ, et al. . Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun. (2015) 6:7158. doi: 10.1038/ncomms8158 PubMed DOI PMC
Liou GY, Bastea L, Fleming A, Döppler H, Edenfield BH, Dawson DW, et al. . The presence of interleukin-13 at pancreatic adm/panin lesions alters macrophage populations and mediates pancreatic tumorigenesis. Cell Rep. (2017) 19:1322–33. doi: 10.1016/j.celrep.2017.04.052 PubMed DOI PMC
Wu J, Zhang L, Shi J, He R, Yang W, Habtezion A, et al. . Macrophage phenotypic switch orchestrates the inflammation and repair/regeneration following acute pancreatitis injury. EBioMedicine. (2020) 58:102920. doi: 10.1016/j.ebiom.2020.102920 PubMed DOI PMC
Yang Y, Ye YC, Chen Y, Zhao JL, Gao CC, Han H, et al. . Crosstalk between hepatic tumor cells and macrophages via wnt/B-catenin signaling promotes M2-like macrophage polarization and reinforces tumor Malignant behaviors. Cell Death Dis. (2018) 9:793. doi: 10.1038/s41419-018-0818-0 PubMed DOI PMC
Wang Y, Barrett A, Hu Q. Targeting macrophages for tumor therapy. AAPS J. (2023) 25:80. doi: 10.1208/s12248-023-00845-y PubMed DOI
Li J, Sun J, Zeng Z, Liu Z, Ma M, Zheng Z, et al. . Tumour-associated macrophages in gastric cancer: from function and mechanism to application. Clin Trans Med. (2023) 13:e1386. doi: 10.1002/ctm2.1386 PubMed DOI PMC
Li M, Yang Y, Xiong L, Jiang P, Wang J, Li C. Metabolism, metabolites, and macrophages in cancer. J Hematol Oncol. (2023) 16:80. doi: 10.1186/s13045-023-01478-6 PubMed DOI PMC
Shao Y, Wang Y, Su R, Pu W, Chen S, Fu L, et al. . Dual identity of tumor-associated macrophage in regulated cell death and oncotherapy. Heliyon. (2023) 9:e17582. doi: 10.1016/j.heliyon.2023.e17582 PubMed DOI PMC
Muhl L, Genové G, Leptidis S, Liu J, He L, Mocci G, et al. . Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat Commun. (2020) 11:3953. doi: 10.1038/s41467-020-17740-1 PubMed DOI PMC
Moratin H, Böhm S, Hagen R, Scherzad A, Hackenberg S. Influence of wound fluid on the transdifferentiation of human mesenchymal bone marrow stem cells into cancer-associated fibroblasts. Cells Tissues Organs. (2023) 212:304–16. doi: 10.1159/000525342 PubMed DOI
Frisbie L, Buckanovich RJ, Coffman L. Carcinoma-associated mesenchymal stem/stromal cells: architects of the pro-tumorigenic tumor microenvironment. Stem Cells. (2022) 40:705–15. doi: 10.1093/stmcls/sxac036 PubMed DOI PMC
Houthuijzen JM, de Bruijn R, van der Burg E, Drenth AP, Wientjens E, Filipovic T, et al. . Cd26-negative and cd26-positive tissue-resident fibroblasts contribute to functionally distinct caf subpopulations in breast cancer. Nat Commun. (2023) 14:183. doi: 10.1038/s41467-023-35793-w PubMed DOI PMC
Aden D, Zaheer S, Ahluwalia H, Ranga S. Cancer-associated fibroblasts: is it a key to an intricate lock of tumorigenesis? Cell Biol Int. (2023) 47:859–93. doi: 10.1002/cbin.12004 PubMed DOI
Vokurka M, Lacina L, Brabek J, Kolar M, Ng YZ, Smetana K, Jr. Cancer-associated fibroblasts influence the biological properties of Malignant tumours via paracrine secretion and exosome production. Int J Mol Sci. (2022) 23:964. doi: 10.3390/ijms23020964 PubMed DOI PMC
Aboussekhra A, Islam SS, Alraouji NN. Activated breast stromal fibroblasts exhibit myoepithelial and mammary stem cells features. Trans Oncol. (2023) 35:101721. doi: 10.1016/j.tranon.2023.101721 PubMed DOI PMC
Adjuto-Saccone M, Soubeyran P, Garcia J, Audebert S, Camoin L, Rubis M, et al. . Tnf-A Induces endothelial-mesenchymal transition promoting stromal development of pancreatic adenocarcinoma. Cell Death Dis. (2021) 12:649. doi: 10.1038/s41419-021-03920-4 PubMed DOI PMC
Dvorankova B, Smetana K, Jr., Rihova B, Kucera J, Mateu R, Szabo P. Cancer-associated fibroblasts are not formed from cancer cells by epithelial-to-mesenchymal transition in nu/nu mice. Histochem Cell Biol. (2015) 143:463–9. doi: 10.1007/s00418-014-1293-z PubMed DOI
Dvorankova B, Lacina L, Smetana K, Jr. Isolation of normal fibroblasts and their cancer-associated counterparts (Cafs) for biomedical research. Methods Mol Biol. (2019) 1879:393–406. doi: 10.1007/7651_2018_137 PubMed DOI
Novotný J, Strnadová K, Dvořánková B, Kocourková Š, Jakša R, Dundr P, et al. . Single-cell rna sequencing unravels heterogeneity of the stromal niche in cutaneous melanoma heterogeneous spheroids. Cancers (Basel). (2020) 12:3324. doi: 10.3390/cancers12113324 PubMed DOI PMC
Knipper K, Lyu SI, Quaas A, Bruns CJ, Schmidt T. Cancer-associated fibroblast heterogeneity and its influence on the extracellular matrix and the tumor microenvironment. Int J Mol Sci. (2023) 24:13482. doi: 10.3390/ijms241713482 PubMed DOI PMC
Mou T, Zhu H, Jiang Y, Xu X, Cai L, Zhong Y, et al. . Heterogeneity of cancer-associated fibroblasts in head and neck squamous cell carcinoma. Trans Oncol. (2023) 35:101717. doi: 10.1016/j.tranon.2023.101717 PubMed DOI PMC
Liu W, Wang M, Wang M, Liu M. Single-cell and bulk rna sequencing reveal cancer-associated fibroblast heterogeneity and a prognostic signature in prostate cancer. Med (Baltimore). (2023) 102:e34611. doi: 10.1097/md.0000000000034611 PubMed DOI PMC
Macy AM, Herrmann LM, Adams AC, Hastings KT. Major histocompatibility complex class ii in the tumor microenvironment: functions of nonprofessional antigen-presenting cells. Curr Opin Immunol. (2023) 83:102330. doi: 10.1016/j.coi.2023.102330 PubMed DOI PMC
Hu B, Wu C, Mao H, Gu H, Dong H, Yan J, et al. . Subpopulations of cancer-associated fibroblasts link the prognosis and metabolic features of pancreatic ductal adenocarcinoma. Ann Transl Med. (2022) 10:262. doi: 10.21037/atm-22-407 PubMed DOI PMC
Raudenska M, Balvan J, Hanelova K, Bugajova M, Masarik M. Cancer-associated fibroblasts: mediators of head and neck tumor microenvironment remodeling. Biochim Biophys Acta Rev Cancer. (2023) 1878:188940. doi: 10.1016/j.bbcan.2023.188940 PubMed DOI
Jobe NP, Rösel D, Dvořánková B, Kodet O, Lacina L, Mateu R, et al. . Simultaneous blocking of il-6 and il-8 is sufficient to fully inhibit caf-induced human melanoma cell invasiveness. Histochem Cell Biol. (2016) 146:205–17. doi: 10.1007/s00418-016-1433-8 PubMed DOI
Xiang X, Niu YR, Wang ZH, Ye LL, Peng WB, Zhou Q. Cancer-associated fibroblasts: vital suppressors of the immune response in the tumor microenvironment. Cytokine Growth Factor Rev. (2022) 67:35–48. doi: 10.1016/j.cytogfr.2022.07.006 PubMed DOI
Chuangchot N, Jamjuntra P, Yangngam S, Luangwattananun P, Thongchot S, Junking M, et al. . Enhancement of pd-L1-attenuated car-T cell function through breast cancer-associated fibroblasts-derived il-6 signaling via stat3/akt pathways. Breast Cancer Res. (2023) 25:86. doi: 10.1186/s13058-023-01684-7 PubMed DOI PMC
Mun K, Han J, Roh P, Park J, Kim G, Hur W, et al. . Isolation and characterization of cancer-associated fibroblasts in the tumor microenvironment of hepatocellular carcinoma. J liver Cancer. (2023) 23:341–9. doi: 10.17998/jlc.2023.04.30 PubMed DOI PMC
Uehara T, Sato K, Iwaya M, Asaka S, Nakajima T, Nagaya T, et al. . Interleukin-6 stromal expression is correlated with epithelial-mesenchymal transition at tumor budding in colorectal cancer. Int J Surg Pathol. (2023) 32:10668969231177705. doi: 10.1177/10668969231177705 PubMed DOI
Li J, Xu L, Run ZC, Feng W, Liu W, Zhang PJ, et al. . Multiple cytokine profiling in serum for early detection of gastric cancer. World J Gastroenterol. (2018) 24:2269–78. doi: 10.3748/wjg.v24.i21.2269 PubMed DOI PMC
Kucera J, Strnadova K, Dvorankova B, Lacina L, Krajsova I, Stork J, et al. . Serum proteomic analysis of melanoma patients with immunohistochemical profiling of primary melanomas and cultured cells: pilot study. Oncol Rep. (2019) 42:1793–804. doi: 10.3892/or.2019.7319 PubMed DOI PMC
Rezaei F, Mozaffari HR, Tavasoli J, Zavattaro E, Imani MM, Sadeghi M. Evaluation of serum and salivary interleukin-6 and interleukin-8 levels in oral squamous cell carcinoma patients: systematic review and meta-analysis. J Interferon Cytokine research: Off J Int Soc Interferon Cytokine Res. (2019) 39:727–39. doi: 10.1089/jir.2019.0070 PubMed DOI
Zhao Y, Jia S, Zhang K, Zhang L. Serum cytokine levels and other associated factors as possible immunotherapeutic targets and prognostic indicators for lung cancer. Front Oncol. (2023) 13:1064616. doi: 10.3389/fonc.2023.1064616 PubMed DOI PMC
Bao C, Gu J, Huang X, You L, Zhou Z, Jin J. Cytokine profiles in patients with newly diagnosed diffuse large B-cell lymphoma: il-6 and il-10 levels are associated with adverse clinical features and poor outcomes. Cytokine. (2023) 169:156289. doi: 10.1016/j.cyto.2023.156289 PubMed DOI
Brierly G, Celentano A, Breik O, Moslemivayeghan E, Patini R, McCullough M, et al. . Tumour necrosis factor alpha (Tnf-A) and oral squamous cell carcinoma. Cancers (Basel). (2023) 15:1841. doi: 10.3390/cancers15061841 PubMed DOI PMC
Wang W, Liu X, Yang S, Peng X, Ma Y, Xiong X, et al. . Serum levels of soluble interleukin 2 receptor (Sil-2r), tumor necrosis factor-alpha (Tnf-A), and immunoglobulin M are correlated with the disease extent in childhood langerhans cell histiocytosis. J Cancer Res Clin Oncol. (2023) 149:11431–42. doi: 10.1007/s00432-023-04991-w PubMed DOI
Zeng B, Wang X, Qin Y, Cao L, Zhang C, Meng F, et al. . Differences in serum cytokine levels distinguish between clinically noninvasive lung adenocarcinoma and invasive lung adenocarcinoma: A cross-sectional study. Health Sci Rep. (2023) 6:e1522. doi: 10.1002/hsr2.1522 PubMed DOI PMC
Kodet O, Kučera J, Strnadová K, Dvořánková B, Štork J, Lacina L, et al. . Cutaneous melanoma dissemination is dependent on the Malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review). Int J Oncol. (2020) 57:619–30. doi: 10.3892/ijo.2020.5090 PubMed DOI PMC
Kodet O, Dvořánková B, Bendlová B, Sýkorová V, Krajsová I, Štork J, et al. . Microenvironment−Driven resistance to B−Raf inhibition in a melanoma patient is accompanied by broad changes of gene methylation and expression in distal fibroblasts. Int J Mol Med. (2018) 41:2687–703. doi: 10.3892/ijmm.2018.3448 PubMed DOI PMC
Kawasaki K, Noma K, Kato T, Ohara T, Tanabe S, Takeda Y, et al. . Pd-L1-expressing cancer-associated fibroblasts induce tumor immunosuppression and contribute to poor clinical outcome in esophageal cancer. Cancer Immunol Immunother. (2023) 72:3787–802. doi: 10.1007/s00262-023-03531-2 PubMed DOI PMC
Shivnani P, Shekhawat S, Prajapati A. Cancer cachexia and breast cancer stem cell signalling - a crosstalk of signalling molecules. Cell Signal. (2023) 110:110847. doi: 10.1016/j.cellsig.2023.110847 PubMed DOI
Malla J, Zahra A, Venugopal S, Selvamani TY, Shoukrie SI, Selvaraj R, et al. . What role do inflammatory cytokines play in cancer cachexia? Cureus. (2022) 14:e26798. doi: 10.7759/cureus.26798 PubMed DOI PMC
Paval DR, Patton R, McDonald J, Skipworth RJE, Gallagher IJ, Laird BJ. A systematic review examining the relationship between cytokines and cachexia in incurable cancer. J Cachexia Sarcopenia Muscle. (2022) 13:824–38. doi: 10.1002/jcsm.12912 PubMed DOI PMC
Amirkhanzadeh Barandouzi Z, Bruner DW, Miller AH, Paul S, Felger JC, Wommack EC, et al. . Associations of inflammation with neuropsychological symptom cluster in patients with head and neck cancer: A longitudinal study. Brain behavior Immun - Health. (2023) 30:100649. doi: 10.1016/j.bbih.2023.100649 PubMed DOI PMC
Kim HJ, Moon JH, Chung SW, Abraham I. The role of cytokines and indolamine-2.3 dioxygenase in experiencing a psycho-neurological symptom cluster in hematological cancer patients: il-1alpha, il-1beta, il-4, il-6, tnf-alpha, kynurenine, and tryptophan. J psychosomatic Res. (2023) 173:111455. doi: 10.1016/j.jpsychores.2023.111455 PubMed DOI
Madison AA, Andridge R, Kantaras AH, Renna ME, Bennett JM, Alfano CM, et al. . Depression, inflammation, and intestinal permeability: associations with subjective and objective cognitive functioning throughout breast cancer survivorship. Cancers (Basel). (2023) 15:4414. doi: 10.3390/cancers15174414 PubMed DOI PMC
Rafaeva M, Jensen ARD, Horton ER, Zornhagen KW, Strøbech JE, Fleischhauer L, et al. . Fibroblast-derived matrix models desmoplastic properties and forms a prognostic signature in cancer progression. Front Immunol. (2023) 14:1154528. doi: 10.3389/fimmu.2023.1154528 PubMed DOI PMC
Liu X, Li J, Yang X, Li X, Kong J, Qi D, et al. . Carcinoma-associated fibroblast-derived lysyl oxidase-rich extracellular vesicles mediate collagen crosslinking and promote epithelial-mesenchymal transition via P-fak/P-paxillin/yap signaling. Int J Oral Sci. (2023) 15:32. doi: 10.1038/s41368-023-00236-1 PubMed DOI PMC
Pajic-Lijakovic I, Milivojevic M. Physics of collective cell migration. Eur biophysics journal: EBJ. (2023) 52:625–40. doi: 10.1007/s00249-023-01681-w PubMed DOI
Trylcova J, Busek P, Smetana K, Jr., Balaziova E, Dvorankova B, Mifkova A, et al. . Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro . Tumour Biol. (2015) 36:5873–9. doi: 10.1007/s13277-015-3259-8 PubMed DOI
Urban L, Novák Š, Čoma M, Dvořánková B, Lacina L, Šáchová J, et al. . Unravelling heterogeneous effects of cancer−Associated fibroblasts on poor prognosis markers in breast cancer em−G3 cell line: in vitro−Targeted treatment (Anti−Il-6, anti−Vegf-a, anti−Mfge8) based on transcriptomic profiling. Oncol Rep. (2024) 51:3. doi: 10.3892/or.2023.8662 PubMed DOI PMC
Kerdidani D, Aerakis E, Verrou KM, Angelidis I, Douka K, Maniou MA, et al. . Lung tumor mhcii immunity depends on in situ antigen presentation by fibroblasts. J Exp Med. (2022) 219:e20210815. doi: 10.1084/jem.20210815 PubMed DOI PMC
Tsoumakidou M. The advent of immune stimulating cafs in cancer. Nat Rev Cancer. (2023) 23:258–69. doi: 10.1038/s41568-023-00549-7 PubMed DOI
Miyai Y, Sugiyama D, Hase T, Asai N, Taki T, Nishida K, et al. . Meflin-positive cancer-associated fibroblasts enhance tumor response to immune checkpoint blockade. Life Sci alliance. (2022) 5:e202101230. doi: 10.26508/lsa.202101230 PubMed DOI PMC
Zhao Z, Li T, Yuan Y, Zhu Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun Signal. (2023) 21:96. doi: 10.1186/s12964-023-01125-0 PubMed DOI PMC
Aguilar-Cazares D, Chavez-Dominguez R, Marroquin-Muciño M, Perez-Medina M, Benito-Lopez JJ, Camarena A, et al. . The systemic-level repercussions of cancer-associated inflammation mediators produced in the tumor microenvironment. Front Endocrinol. (2022) 13:929572. doi: 10.3389/fendo.2022.929572 PubMed DOI PMC
Rajendram P, Torbic H, Duggal A, Campbell J, Hovden M, Dhawan V, et al. . Critically ill patients with severe immune checkpoint inhibitor related neurotoxicity: A multi-center case series. J Crit Care. (2021) 65:126–32. doi: 10.1016/j.jcrc.2021.05.020 PubMed DOI PMC
Duong SL, Prüss H. Paraneoplastic autoimmune neurological syndromes and the role of immune checkpoint inhibitors. Neurotherapeutics: J Am Soc Exp Neurother. (2022) 19:848–63. doi: 10.1007/s13311-022-01184-0 PubMed DOI PMC
Eberst L, Cassier PA, Brahmi M, Tirode F, Blay JY. Tocilizumab for the treatment of paraneoplastic inflammatory syndrome associated with angiomatoid fibrous histiocytoma. ESMO Open. (2020) 5:e000756. doi: 10.1136/esmoopen-2020-000756 PubMed DOI PMC
Sabe H, Inoue A, Nagata S, Imura Y, Wakamatsu T, Takenaka S, et al. . Tocilizumab controls paraneoplastic inflammatory syndrome but does not suppress tumor growth of angiomatoid fibrous histiocytoma. Case Rep oncological Med. (2021) 2021:5532258. doi: 10.1155/2021/5532258 PubMed DOI PMC
Anderson HJ, Huang S, Lee JB. Paraneoplastic pemphigus/paraneoplastic autoimmune multiorgan syndrome: part I. Clinical overview and pathophysiology. J Am Acad Dermatol. (2024) 91:1–10. doi: 10.1016/j.jaad.2023.08.020 PubMed DOI
Jimenez LF, Castellon EA, Marenco JD, Mejia JM, Rojas CA, Jimenez FT, et al. . Chronic urticaria associated with lung adenocarcinoma - a paraneoplastic manifestation: A case report and literature review. World J Clin cases. (2022) 10:7553–64. doi: 10.12998/wjcc.v10.i21.7553 PubMed DOI PMC
Wick MR, Patterson JW. Cutaneous paraneoplastic syndromes. Semin Diagn Pathol. (2019) 36:211–28. doi: 10.1053/j.semdp.2019.01.001 PubMed DOI
Gra M, Pham-Ledard A, Gerard E, Dutriaux C, Beylot-Barry M, Duval F, et al. . Brief communication: lambert-eaton myasthenic paraneoplastic syndrome associated with merkel cell carcinoma successfully treated by immune checkpoint inhibitors: 2 cases. J Immunother. (2023) 46:276–8. doi: 10.1097/CJI.0000000000000480 PubMed DOI
Kisacik B, Albayrak F, Balci MA, Koc E. Paraneoplastic arthritis: A series of 92 cases. Rheumatol (Oxford). (2024) 63:1923–6. doi: 10.1093/rheumatology/kead500 PubMed DOI
Ferronato M, Lalanne C, Quarneti C, Cevolani M, Ricci C, Granito A, et al. . Paraneoplastic anti-tif1-gamma autoantibody-positive dermatomyositis as clinical presentation of hepatocellular carcinoma recurrence. J Clin Transl Hepatol. (2023) 11:253–9. doi: 10.14218/JCTH.2021.00573 PubMed DOI PMC
Milani R, Cannizzaro M, Arrigoni G, Filipello F, Cerri F, Filippi M. Subacute sensory neuronopathy associated with merkel cell carcinoma with unknown primary: A case report with literature review. J Neurol. (2022) 269:4080–8. doi: 10.1007/s00415-022-11116-9 PubMed DOI
Sardina Gonzalez C, Martinez Vivero C, Lopez Castro J. Paraneoplastic syndromes review: the great forgotten ones. Crit Rev Oncol Hematol. (2022) 174:103676. doi: 10.1016/j.critrevonc.2022.103676 PubMed DOI
Onyema MC, Drakou EE, Dimitriadis GK. Endocrine abnormality in paraneoplastic syndrome. Best Pract Res Clin Endocrinol Metab. (2022) 36:101621. doi: 10.1016/j.beem.2022.101621 PubMed DOI
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab. (2023) 74:101755. doi: 10.1016/j.molmet.2023.101755 PubMed DOI PMC
López-Otín C, Pietrocola F, Roiz-Valle D, Galluzzi L, Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab. (2023) 35:12–35. doi: 10.1016/j.cmet.2022.11.001 PubMed DOI
Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing Res Rev. (2011) 10:319–29. doi: 10.1016/j.arr.2010.11.002 PubMed DOI PMC
Soysal P, Stubbs B, Lucato P, Luchini C, Solmi M, Peluso R, et al. . Inflammation and frailty in the elderly: A systematic review and meta-analysis. Ageing Res Rev. (2016) 31:1–8. doi: 10.1016/j.arr.2016.08.006 PubMed DOI
Logan S, Baier MP, Owen DB, Peasari J, Jones KL, Ranjit R, et al. . Cognitive heterogeneity reveals molecular signatures of age-related impairment. PNAS nexus. (2023) 2:pgad101. doi: 10.1093/pnasnexus/pgad101 PubMed DOI PMC
Adriaensen W, Matheï C, Vaes B, van Pottelbergh G, Wallemacq P, Degryse JM. Interleukin-6 as a first-rated serum inflammatory marker to predict mortality and hospitalization in the oldest old: A regression and cart approach in the belfrail study. Exp Gerontol. (2015) 69:53–61. doi: 10.1016/j.exger.2015.06.005 PubMed DOI
Lim KY, Shukeri W, Hassan W, Mat-Nor MB, Hanafi MH. The combined use of interleukin-6 with serum albumin for mortality prediction in critically ill elderly patients: the interleukin-6-to-albumin ratio. Indian J Crit Care medicine: peer-reviewed Off Publ Indian Soc Crit Care Med. (2022) 26:1126–30. doi: 10.5005/jp-journals-10071-24324 PubMed DOI PMC
Ali NS, Hashem AHH, Hassan AM, Saleh AA, El-Baz HN. Serum interleukin-6 is related to lower cognitive functioning in elderly patients with major depression<Sup/>. Aging Ment Health. (2018) 22:655–61. doi: 10.1080/13607863.2017.1293005 PubMed DOI
Pan L, Xie W, Fu X, Lu W, Jin H, Lai J, et al. . Inflammation and sarcopenia: A focus on circulating inflammatory cytokines. Exp Gerontol. (2021) 154:111544. doi: 10.1016/j.exger.2021.111544 PubMed DOI
Rosenblum SL. Inflammation, dysregulated iron metabolism, and cardiovascular disease. Front Aging. (2023) 4:1124178. doi: 10.3389/fragi.2023.1124178 PubMed DOI PMC
Rashidah NH, Lim SM, Neoh CF, Majeed ABA, Tan MP, Khor HM, et al. . Differential gut microbiota and intestinal permeability between frail and healthy older adults: A systematic review. Ageing Res Rev. (2022) 82:101744. doi: 10.1016/j.arr.2022.101744 PubMed DOI
Salvioli S, Basile MS, Bencivenga L, Carrino S, Conte M, Damanti S, et al. . Biomarkers of aging in frailty and age-associated disorders: state of the art and future perspective. Ageing Res Rev. (2023) 91:102044. doi: 10.1016/j.arr.2023.102044 PubMed DOI
Gholami A, Baradaran HR, Hariri M. Can soy isoflavones plus soy protein change serum levels of interlukin-6? A systematic review and meta-analysis of randomized controlled trials. Phytother Res. (2021) 35:1147–62. doi: 10.1002/ptr.6881 PubMed DOI
Balducci L. Aging, frailty, and chemotherapy. Cancer control: J Moffitt Cancer Center. (2007) 14:7–12. doi: 10.1177/107327480701400102 PubMed DOI
Lacina L, Brábek J, Král V, Kodet O, Smetana K, Jr. Interleukin-6: A molecule with complex biological impact in cancer. Histol Histopathol. (2019) 34:125–36. doi: 10.14670/hh-18-033 PubMed DOI
Španko M, Strnadová K, Pavlíček AJ, Szabo P, Kodet O, Valach J, et al. . Il-6 in the ecosystem of head and neck cancer: possible therapeutic perspectives. Int J Mol Sci. (2021) 22:11027. doi: 10.3390/ijms222011027 PubMed DOI PMC
Rose-John S, Jenkins BJ, Garbers C, Moll JM, Scheller J. Targeting il-6 trans-signalling: past, present and future prospects. Nat Rev Immunol. (2023) 23:666–81. doi: 10.1038/s41577-023-00856-y PubMed DOI PMC
Matsuda T. The physiological and pathophysiological role of il-6/stat3-mediated signal transduction and stat3 binding partners in therapeutic applications. Biol Pharm Bull. (2023) 46:364–78. doi: 10.1248/bpb.b22-00887 PubMed DOI
Aletaha D, Kerschbaumer A, Kastrati K, Dejaco C, Dougados M, McInnes IB, et al. . Consensus statement on blocking interleukin-6 receptor and interleukin-6 in inflammatory conditions: an update. Ann rheumatic Dis. (2023) 82:773–87. doi: 10.1136/ard-2022-222784 PubMed DOI
Ascierto PA, Fu B, Wei H. Il-6 modulation for covid-19: the right patients at the right time? J Immunother Cancer. (2021) 9:e002285. doi: 10.1136/jitc-2020-002285 PubMed DOI PMC
Villaescusa L, Zaragozá F, Gayo-Abeleira I, Zaragozá C. A new approach to the management of covid-19. Antagonists of il-6: siltuximab. Adv Ther. (2022) 39:1126–48. doi: 10.1007/s12325-022-02042-3 PubMed DOI PMC
Rašková M, Lacina L, Kejík Z, Venhauerová A, Skaličková M, Kolář M, et al. . The role of il-6 in cancer cell invasiveness and metastasis-overview and therapeutic opportunities. Cells. (2022) 11:3698. doi: 10.3390/cells11223698 PubMed DOI PMC
Wen Y, Zhu Y, Zhang C, Yang X, Gao Y, Li M, et al. . Chronic inflammation, cancer development and immunotherapy. Front Pharmacol. (2022) 13:1040163. doi: 10.3389/fphar.2022.1040163 PubMed DOI PMC
Talianová V, Kejík Z, Kaplánek R, Veselá K, Abramenko N, Lacina L, et al. . New-generation heterocyclic bis-pentamethinium salts as potential cytostatic drugs with dual il-6r and mitochondria-targeting activity. Pharmaceutics. (2022) 14:1712. doi: 10.3390/pharmaceutics14081712 PubMed DOI PMC