• This record comes from PubMed

A linkage map of Aegilops biuncialis reveals significant genomic rearrangements compared to bread wheat

. 2025 Mar ; 18 (1) : e70009.

Language English Country United States Media print

Document type Journal Article

Grant support
K135057 Hungarian National Research, Development and Innovation Office
PD145915 Hungarian National Research, Development and Innovation Office
TKP2021-NKTA-06 Hungarian National Research, Development and Innovation Office
CZ.02.01.01/00/22_008/0004581 ERDF Programme Johannes Amos Comenius
H2020-MSCA-IF-2016-746253 Marie Curie Fellowship 'AEGILWHEAT'

Goatgrasses with U- and M-genomes are important sources of new alleles for wheat breeding to maintain yield and quality under extreme conditions. However, the introgression of beneficial traits from wild Aegilops species into wheat has been limited by poor knowledge of their genomes and scarcity of molecular tools. Here, we present the first linkage map of allotetraploid Aegilops biuncialis Vis., developed using 224 F2 individuals derived from a cross between MvGB382 and MvGB642 accessions. The map comprises 5663 DArTseq markers assigned to 15 linkage groups corresponding to 13 chromosomes. Chromosome 1Mb could not be constructed due to a lack of recombination caused by rearrangements in the MvGB382 accession. The genetic map spans 2518 cM with an average marker density of 2.79 cM. The skeleton map contains 920 segregating markers, divided between the Mb sub-genome (425 markers) and the Ub sub-genome (495 markers). Chromosomes of the Mb sub-genome, originating from Aegilops comosa Sm. in Sibth. et Sm., show well-preserved collinearity with Triticum aestivum L. chromosomes. In contrast, chromosomes of the Ub sub-genome, originating from Aegilops umbellulata Zhuk., exhibit a varying degree of collinearity, with 1Ub, 3Ub, and 5Ub retaining a substantial level of collinearity with Triticum aestivum, while 2Ub, 4Ub, 6Ub, and 7Ub show significant rearrangements. A quantitative trait locus affecting fertility was identified near the centromere on the long arm of chromosome 3Mb, explaining 23.5% of the variance. The genome structure of Aegilops biuncialis, highlighted by the genetic map, provides insights into the speciation within the species and will support alien gene transfer into wheat.

See more in PubMed

Abrouk, M. , Balcárková, B. , Šimková, H. , Komínková, E. , Martis, M. , Jakobson, I. , Timofejeva, L. , Rey, E. , Vrána, J. , Kilian, A. , Järve, K. , Doležel, J. , & Valárik, M. (2017). The in silico identification and characterization of a bread wheat/Triticum militinae introgression line. Plant Biotechnology Journal, 15, 249–256. 10.1111/pbi.12610 PubMed DOI PMC

Abrouk, M. , Wang, Y. , Cavalet‐Giorsa, E. , Troukhan, M. , Kravchuk, M. , & Krattinger, S. G. (2023). Chromosome‐scale assembly of the wild wheat relative Aegilops umbellulata . Scientific Data, 10(1), Article 739. 10.1038/s41597-023-02658-2 PubMed DOI PMC

Altschul, S. (1997). Gapped BLAST and PSI‐BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402. 10.1093/nar/25.17.3389 PubMed DOI PMC

Badaeva, E. D. , Amosova, A. V. , Samatadze, T. E. , Zoshchuk, S. A. , Shostak, N. G. , Chikida, N. N. , Zelenin, A. V. , Raupp, W. J. , Friebe, B. , & Gill, B. S. (2004). Genome differentiation in Aegilops. 4. Evolution of the U‐genome cluster. Plant Systematics and Evolution, 246(1–2), 45–76. 10.1007/s00606-003-0072-4 DOI

Balcárková, B. , Frenkel, Z. , Škopová, M. , Abrouk, M. , Kumar, A. , Chao, S. , Kianian, S. F. , Akhunov, E. , Korol, A. B. , Doležel, J. , & Valárik, M. (2017). A high resolution radiation hybrid map of wheat chromosome 4A. Frontiers in Plant Science, 7, Article 2063. 10.3389/fpls.2016.02063 PubMed DOI PMC

Bayer, M. , Milne, I. , Stephen, G. , Shaw, P. , Cardle, L. , Wright, F. , & Marshall, D. (2011). Comparative visualization of genetic and physical maps with Strudel. Bioinformatics, 27(9), 1307–1308. 10.1093/bioinformatics/btr111 PubMed DOI PMC

Bedbrook, J. R. , Jones, J. , O'Dell, M. , Thompson, R. D. , & Flavell, R. B. (1980). A molecular description of telomeric heterochromatin in secale species. Cell, 19(2), 545–560. 10.1016/0092-8674(80)90529-2 PubMed DOI

Colmer, T. D. , Flowers, T. J. , & Munns, R. (2006). Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany, 57(5), 1059–1078. 10.1093/jxb/erj124 PubMed DOI

Cruz, V. M. V. , Kilian, A. , & Dierig, D. A. (2013). Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop Lesquerella and related species. PLoS One, 8(5), e64062. 10.1371/journal.pone.0064062 PubMed DOI PMC

Damania, A. B. , & Pecetti, L. (1990). Variability in a collection of Aegilops species and evaluation for yellow rust resistance at two locations in Northern Syria. Journal of Genetics and Breeding, 44, 97–102.

Danilova, T. V. , Friebe, B. , & Gill, B. S. (2014). Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae . Theoretical and Applied Genetics, 127(3), 715–730. 10.1007/s00122-013-2253-z PubMed DOI PMC

Darkó, É. , Khalil, R. , Dobi, Z. , Kovács, V. , Szalai, G. , Janda, T. , & Molnár, I. (2020). Addition of Aegilops biuncialis chromosomes 2 M or 3 M improves the salt tolerance of wheat in different way. Scientific Reports, 10(1), Article 22327. 10.1038/s41598-020-79372-1 PubMed DOI PMC

Devos, K. M. , Atkinson, M. D. , Chinoy, C. N. , Francis, H. A. , Harcourt, R. L. , Koebner, R. M. D. , Liu, C. J. , Masojć, P. , Xie, D. X. , & Gale, M. D. (1993). Chromosomal rearrangements in the rye genome relative to that of wheat. Theoretical and Applied Genetics, 85–85(6–7), 673–680. 10.1007/bf00225004 PubMed DOI

Dimov, A. , Zaharieva, M. , & Mihova, S. (1993). Rust and powdery mildew resistance in Aegilops accessions from Bulgaria. In Damania A. B. (Ed.), Biodiversity and wheat improvement (pp. 165–169). John Wiley & Sons.

Dulai, S. , Molnár, I. , Szopkó, D. , Darkó, É. , Vojtkó, A. , Sass‐Gyarmati, A. , & Molnár‐Láng, M. (2014). Wheat‐Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress. Journal of Plant Physiology, 171(7), 509–517. 10.1016/j.jplph.2013.11.015 PubMed DOI

Dvorak, J. , Wang, L. , Zhu, T. , Jorgensen, C. M. , Luo, M.‐C. , Deal, K. R. , Gu, Y. Q. , Gill, B. S. , Distelfeld, A. , Devos, K. M. , Qi, P. , & McGuire, P. E. (2018). Reassessment of the evolution of wheat chromosomes 4A, 5A, and 7B. Theoretical and Applied Genetics, 131(11), 2451–2462. 10.1007/s00122-018-3165-8 PubMed DOI PMC

Edae, E. A. , Olivera, P. D. , Jin, Y. , Poland, J. A. , & Rouse, M. N. (2016). Genotype‐by‐sequencing facilitates genetic mapping of a stem rust resistance locus in Aegilops umbellulata, a wild relative of cultivated wheat. BMC Genomics, 17(1), Article 1039. 10.1186/s12864-016-3370-2 PubMed DOI PMC

Edae, E. A. , Olivera, P. D. , Jin, Y. , & Rouse, M. N. (2017). Genotyping‐by‐sequencing facilitates a high‐density consensus linkage map for Aegilops umbellulata, a wild relative of cultivated wheat. G3 Genes|Genomes|Genetics, 7(5), 1551–1561. 10.1534/g3.117.039966 PubMed DOI PMC

Ekmekci, Y. , & Terzioglu, S. (2002). Changes in the electrophoretic pattern of soluble shoot proteins of wild and cultivated tetraploid wheats following cold acclimation and freezing. Israel Journal of Plant Sciences, 50, 95–102. 10.1560/DXB5-VHCC-LQCF-PUM4 DOI

Elshire, R. J. , Glaubitz, J. C. , Sun, Q. , Poland, J. A. , Kawamoto, K. , Buckler, E. S. , & Mitchell, S. E. (2011). A robust, simple genotyping‐by‐sequencing (GBS) approach for high diversity species. PLoS One, 6(5), e19379. 10.1371/journal.pone.0019379 PubMed DOI PMC

Endo, T. R. (2007). The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Research, 15(1), 67–75. 10.1007/s10577-006-1100-3 PubMed DOI

Farkas, A. , Gaál, E. , Ivanizs, L. , Blavet, N. , Said, M. , Holušová, K. , Szőke‐Pázsi, K. , Spitkó, T. , Mikó, P. , Türkösi, E. , Kruppa, K. , Kovács, P. , Darkó, É. , Szakács, É. , Bartoš, J. , Doležel, J. , & Molnár, I. (2023). Chromosome genomics facilitates the marker development and selection of wheat‐Aegilops biuncialis addition, substitution and translocation lines. Scientific Reports, 13(1), Article 20499. 10.1038/s41598-023-47845-8 PubMed DOI PMC

Farkas, A. , Molnár, I. , Dulai, S. , Rapi, S. , Oldal, V. , Cseh, A. , Kruppa, K. , & Molnár‐Láng, M. (2014). Increased micronutrient content (Zn, Mn) in the 3Mb(4B) wheat–Aegilops biuncialis substitution and 3Mb.4BS translocation identified by GISH and FISH. Genome, 57(2), 61–67. 10.1139/gen-2013-0204 PubMed DOI

Feldman, M. , & Levy, A. A. (2023). Aegilops L. In Feldman M. & Levy A. A. (Eds.), Wheat evolution and domestication (pp. 213–364). Springer. 10.1007/978-3-031-30175-9_9 DOI

Feuillet, C. , Langridge, P. , & Waugh, R. (2008). Cereal breeding takes a walk on the wild side. Trends in Genetics, 24(1), 24–32. 10.1016/j.tig.2007.11.001 PubMed DOI

Friebe, B. , Badaeva, E. D. , Kammer, K. , & Gill, B. S. (1996). Standard karyotypes of Aegilops uniaristata, Ae. mutica, Ae. comosa subspecies comosa and heldreichii (Poaceae). Plant Systematics and Evolution, 202(3/4), 199–210. 10.1007/BF00983382 DOI

Fukui, K. , Kamisugi, Y. , & Sakai, F. (1994). Physical mapping of 5S rDNA loci by direct‐cloned biotinylated probes in barley chromosomes. Genome, 37(1), 105–111. 10.1139/g94-013 PubMed DOI

Gaál, E. , Farkas, A. , Türkösi, E. , Kruppa, K. , Szakács, É. , Szőke‐Pázsi, K. , Kovács, P. , Kalapos, B. , Darkó, É. , Said, M. , Lampar, A. , Ivanizs, L. , Valárik, M. , Doležel, J. , & Molnár, I. (2024). DArTseq genotyping facilitates identification of Aegilops biuncialis chromatin introgressed into bread wheat Mv9kr1. Plant Molecular Biology, 114(6), Article 122. 10.1007/s11103-024-01520-2 PubMed DOI PMC

Gerlach, W. L. , & Bedbrook, J. R. (1979). Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Research, 7(7), 1869–1885. 10.1093/nar/7.7.1869 PubMed DOI PMC

Hammer, K. (1980). Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L.. Die Kulturpflanze, 28(1), 33–180. 10.1007/bf02014641 DOI

Hernandez, P. , Martis, M. , Dorado, G. , Pfeifer, M. , Gálvez, S. , Schaaf, S. , Jouve, N. , Šimková, H. , Valárik, M. , Doležel, J. , & Mayer, K. F. X. (2011). Next‐generation sequencing and syntenic integration of flow‐sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. The Plant Journal, 69(3), 377–386. 10.1111/j.1365-313x.2011.04808.x PubMed DOI

Ivanizs, L. , Marcotuli, I. , Rakszegi, M. , Kalapos, B. , Szőke‐Pázsi, K. , Farkas, A. , Türkösi, E. , Gaál, E. , Kruppa, K. , Kovács, P. , Darkó, É. , Szakács, É. , Said, M. , Cápal, P. , Doležel, J. , Gadaleta, Á. , & Molnár, I. (2022). Identification of new QTLs for dietary fiber content in Aegilops biuncialis . International Journal of Molecular Sciences, 23(7), 3821–3821. 10.3390/ijms23073821 PubMed DOI PMC

Ivanizs, L. , Monostori, I. , Farkas, A. , Megyeri, M. , Mikó, P. , Türkösi, E. , Gaál, E. , Lenykó‐Thegze, A. , Szőke‐Pázsi, K. , Szakács, É. , Darkó, É. , Kiss, T. , Kilian, A. , & Molnár, I. (2019). Unlocking the genetic diversity and population structure of a wild gene source of wheat, Aegilops biuncialis Vis., and its relationship with the heading time. Frontiers in Plant Science, 10, Article 1531. 10.3389/fpls.2019.01531 PubMed DOI PMC

IWGSC . (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361(6403), eaar7191. 10.1126/science.aar7191 PubMed DOI

Kilian, A. , Wenzl, P. , Huttner, E. , Carling, J. , Xia, L. , Blois, H. , Caig, V. , Heller‐Uszynska, K. , Jaccoud, D. , Hopper, C. , Aschenbrenner‐Kilian, M. , Evers, M. , Peng, K. , Cayla, C. , Hok, P. , & Uszynski, G. (2012). Diversity arrays technology: A generic genome profiling technology on open platforms. In Pompanon F. & Bonin A. (Eds.), Data production and analysis in population genomics (pp. 67–89). Humana. 10.1007/978-1-61779-870-2_5 PubMed DOI

Kilian, B. , Mammen, K. , Millet, E. , Sharma, R. , Graner, A. , Salamini, F. , Hammer, K. , & Özkan, H. (2011). Aegilops. In Kole C. (Ed.), Wild crop relatives: Genomic and breeding resources (pp. 1–76). Springer. 10.1007/978-3-642-14228-4_1 DOI

King, J. , Grewal, S. , Yang, C. , Hubbart, S. , Scholefield, D. , Ashling, S. , Edwards, K. J. , Allen, A. M. , Burridge, A. , Bloor, C. , Davassi, A. , da Silva, G. J. , Chalmers, K. , & King, I. P. (2016). A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum . Plant Biotechnology Journal, 15(2), 217–226. 10.1111/pbi.12606 PubMed DOI PMC

King, J. , Grewal, S. , Yang, C. , Hubbart Edwards, S. , Scholefield, D. , Ashling, S. , Harper, J. A. , Allen, A. M. , Edwards, K. J. , Burridge, A. J. , & King, I. P. (2017). Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes. Annals of Botany, 121(2), 229–240. 10.1093/aob/mcx149 PubMed DOI PMC

Kishii, M. (2019). An update of recent use of Aegilops species in wheat breeding. Frontiers in Plant Science, 10, Article 585. 10.3389/fpls.2019.00585 PubMed DOI PMC

Korchanová, Z. , Švec, M. , Janáková, E. , Lampar, A. , Majka, M. , Holušová, K. , Bonchev, G. , Juračka, J. , Cápal, P. , & Valárik, M. (2022). Identification, high‐density mapping, and characterization of new major powdery mildew resistance loci from the emmer wheat landrace GZ1. Frontiers in Plant Science, 13, 897697. 10.3389/fpls.2022.897697 PubMed DOI PMC

Korol, A. , Mester, D. , Frenkel, Z. , & Ronin, Y. (2009). Methods for genetic analysis in the Triticeae . In Muehlbauer G. & Feuillet C. (Eds.), Genetics and genomics of the Triticeae (Vol. 7, pp. 163–199). Plant genetics and genomics: Crops and models. Springer. 10.1007/978-0-387-77489-3_6 DOI

Kosambi, D. D. (1943). The estimation of map distances from recombination values. Annals of Eugenics, 12(1), 172–175. 10.1111/j.1469-1809.1943.tb02321.x DOI

Krzywinski, M. , Schein, J. , Birol, I. , Connors, J. , Gascoyne, R. , Horsman, D. , Jones, S. J. , & Marra, M. A. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639–1645. 10.1101/gr.092759.109 PubMed DOI PMC

Kubaláková, M. , Kovárová, P. , Suchánková, P. , Cíhalíková, J. , Bartos, J. , Lucretti, S. , Watanabe, N. , Kianian, S. F. , & Dolezel, J. (2005). Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics, 170(2), 823–829. 10.1534/genetics.104.039180 PubMed DOI PMC

Kumar, A. , Seetan, R. , Mergoum, M. , Tiwari, V. K. , Iqbal, M. J. , Wang, Y. , Al‐Azzam, O. , Šimková, H. , Luo, M.‐C. , Dvořák, J. , Gu, Y. Q. , Denton, A. , Kilian, A. , Lazo, G. R. , & Kianian, S. F. (2015). Radiation hybrid maps of the D‐genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes. BMC Genomics, 16(1). 10.1186/s12864-015-2030-2 PubMed DOI PMC

Kwiatek, M. , Błaszczyk, L. , Wiśniewska, H. , & Apolinarska, B. (2011). Aegilops‐Secale amphiploids: Chromosome categorisation, pollen viability and identification of fungal disease resistance genes. Journal of Applied Genetics, 53(1), 37–40. 10.1007/s13353-011-0071-z PubMed DOI PMC

Li, H. , Dong, Z. , Ma, C. , Tian, X. , Xiang, Z. , Xia, Q. , Ma, P. , & Liu, W. (2019). Discovery of powdery mildew resistance gene candidates from Aegilops biuncialis chromosome 2Mb based on transcriptome sequencing. PLoS One, 14(11), e0220089. 10.1371/journal.pone.0220089 PubMed DOI PMC

Li, H. , Rehman, S. , Song, R. , Qiao, L. , Hao, X. , Zhang, J. , Li, K. , Hou, L. , Hu, W. , Wang, L. , & Chen, S. (2024). Chromosome‐scale assembly and annotation of the wild wheat relative Aegilops comosa . Scientific Data, 11(1), Article 1454. 10.1038/s41597-024-04346-1 PubMed DOI PMC

Majka, M. , Janáková, E. , Jakobson, I. , Järve, K. , Cápal, P. , Korchanová, Z. , Lampar, A. , Juračka, J. , & Valárik, M. (2023). The chromatin determinants and Ph1 gene effect at wheat sites with contrasting recombination frequency. Journal of Advanced Research, 53, 75–85. 10.1016/j.jare.2023.01.002 PubMed DOI PMC

Makkouk, K. M. , Comeau, A. , & Ghulam, W. (1994). Resistance to barley yellow dwarf luteovirus in Aegilops species. Canadian Journal of Plant Science, 74, 631–634. 10.4141/cjps94-113 DOI

Molnár, I. , Benavente, E. , & Molnár‐Láng, M. (2009). Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum–Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome, 52(2), 156–165. 10.1139/g08-114 PubMed DOI

Molnár, I. , Cifuentes, M. , Schneider, A. , Benavente, E. , & Molnár‐Láng, M. (2011). Association between simple sequence repeat‐rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Annals of Botany, 107(1), 65–76. 10.1093/aob/mcq215 PubMed DOI PMC

Molnár, I. , Gáspár, L. , Sárvári, É. , Dulai, S. , Hoffmann, B. , Molnár‐Láng, M. , & Galiba, G. (2004). Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Functional Plant Biology, 31(12), 1149–1159. 10.1071/fp03143 PubMed DOI

Molnár, I. , Vrána, J. , Burešová, V. , Cápal, P. , Farkas, A. , Darkó, É. , Cseh, A. , Kubaláková, M. , Molnár‐Láng, M. , & Doležel, J. (2016). Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. The Plant Journal, 88(3), 452–467. 10.1111/tpj.13266 PubMed DOI

Nagaki, K. , Tsujimoto, H. , Isono, K. , & Sasakuma, T. (1995). Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae . Genome, 38(3), 479–486. 10.1139/g95-063 PubMed DOI

Naranjo, T. (2019). The effect of chromosome structure upon meiotic homologous and homoeologous recombinations in Triticeae . Agronomy, 9(9), 552. 10.3390/agronomy9090552 DOI

Nasuda, S. , Friebe, B. , Busch, W. , Kynast, R. G. , & Gill, B. S. (1998). Structural rearrangement in chromosome 2 M of Aegilops comosa has prevented the utilization of the Compair and related wheat‐Ae. comosa translocations in wheat improvement. Theoretical and Applied Genetics, 96(6–7), 780–785. 10.1007/s001220050802 DOI

Olivera, P. D. , Kilian, A. , Wenzl, P. , & Steffenson, B. J. (2013). Development of a genetic linkage map for Sharon goatgrass (Aegilops sharonensis) and mapping of a leaf rust resistance gene. Genome, 56(7), 367–376. 10.1139/gen-2013-0065 PubMed DOI

Olivera, P. D. , Rouse, M. N. , & Jin, Y. (2018). Identification of new sources of resistance to wheat stem rust in Aegilops spp. in the tertiary genepool of wheat. Frontiers in Plant Science, 9, Article 1719. 10.3389/fpls.2018.01719 PubMed DOI PMC

Peleg, Z. , Saranga, Y. , Suprunova, T. , Ronin, Y. , Röder, M. S. , Kilian, A. , Korol, A. B. , & Fahima, T. (2008). High‐density genetic map of durum wheat x wild emmer wheat based on SSR and DArT markers. Theoretical and Applied Genetics, 117(1), 103–115. 10.1007/s00122-008-0756-9 PubMed DOI

Rakszegi, M. , Darkó, É. , Lovegrove, A. , Molnár, I. , Láng, L. , Bedő, Z. , Molnár‐Láng, M. , & Shewry, P. (2019). Drought stress affects the protein and dietary fiber content of wholemeal wheat flour in wheat/Aegilops addition lines. PLoS One, 14(2), e0211892. 10.1371/journal.pone.0211892 PubMed DOI PMC

Rakszegi, M. , Molnár, I. , Lovegrove, A. , Darkó, É. , Farkas, A. , Láng, L. , Bedő, Z. , Doležel, J. , Molnár‐Láng, M. , & Shewry, P. (2017). Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour. Frontiers in Plant Science, 8, Article 1529. 10.3389/fpls.2017.01529 PubMed DOI PMC

Rasche, H. , & Hiltemann, S. (2020). Galactic Circos: User‐friendly Circos plots within the Galaxy platform. GigaScience, 9(6), giaa065. 10.1093/gigascience/giaa065 PubMed DOI PMC

Raskina, O. , Barber, J. C. , Nevo, E. , & Belyayev, A. (2008). Repetitive DNA and chromosomal rearrangements: Speciation‐related events in plant genomes. Cytogenetic and Genome Research, 120(3–4), 351–357. 10.1159/000121084 PubMed DOI

Ray, D. K. , Mueller, N. D. , West, P. C. , & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS One, 8(6), e66428. 10.1371/journal.pone.0066428 PubMed DOI PMC

Roeder, G. S. (1997). Meiotic chromosomes: It takes two to tango. Genes & Development, 11(20), 2600–2621. 10.1101/gad.11.20.2600 PubMed DOI

Ronin, Y. I. , Mester, D. I. , Minkov, D. G. , Akhunov, E. , & Korol, A. B. (2017). Building ultra‐high‐density linkage maps based on efficient filtering of trustable markers. Genetics, 206(3), 1285–1295. 10.1534/genetics.116.197491 PubMed DOI PMC

Said, M. , Cápal, P. , Farkas, A. , Gaál, E. , Ivanizs, L. , Friebe, B. , Doležel, J. , & Molnár, I. (2022). Flow karyotyping of wheat‐Aegilops additions facilitate dissecting the genomes of Ae. biuncialis and Ae. geniculata into individual chromosomes. Frontiers in Plant Science, 13, 1017958. 10.3389/fpls.2022.1017958 PubMed DOI PMC

Said, M. , Holušová, K. , Farkas, A. , Ivanizs, L. , Gaál, E. , Cápal, P. , Abrouk, M. , Martis‐Thiele, M. M. , Kalapos, B. , Bartoš, J. , Friebe, B. , Doležel, J. , & Molnár, I. (2021). Development of DNA markers from physically mapped loci in Aegilops comosa and Aegilops umbellulata using single‐gene FISH and chromosome sequences. Frontiers in Plant Science, 12, 689031. 10.3389/fpls.2021.689031 PubMed DOI PMC

Said, M. , Hřibová, E. , Danilova, T. V. , Karafiátová, M. , Čížková, J. , Friebe, B. , Doležel, J. , Gill, B. S. , & Vrána, J. (2018). The Agropyron cristatum karyotype, chromosome structure and cross‐genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single‐gene probes. Theoretical and Applied Genetics, 131(10), 2213–2227. 10.1007/s00122-018-3148-9 PubMed DOI PMC

Said, M. , Kubaláková, M. , Karafiátová, M. , Molnár, I. , Doležel, J. , & Vrána, J. (2019a). Dissecting the complex genome of crested wheatgrass by chromosome flow sorting. The Plant Genome, 12(2), 180096. 10.3835/plantgenome2018.12.0096 PubMed DOI

Said, M. , Parada, A. C. , Gaál, E. , Molnár, I. , Cabrera, A. , Doležel, J. , & Vrána, J. (2019b). Uncovering homeologous relationships between tetraploid Agropyron cristatum and bread wheat genomes using COS markers. Theoretical and Applied Genetics, 132(10), 2881–2898. 10.1007/s00122-019-03394-1 PubMed DOI PMC

Sansaloni, C. , Petroli, C. , Jaccoud, D. , Carling, J. , Detering, F. , Grattapaglia, D. , & Kilian, A. (2011). Diversity Arrays Technology (DArT) and next‐generation sequencing combined: Genome‐wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus . BMC Proceedings, 5(S7), Article P54. 10.1186/1753-6561-5-S7-p54 PubMed DOI

Schneider, A. , Linc, G. , Molnár, I. , & Molnár‐Láng, M. (2005). Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat–Aegilops biuncialis disomic addition lines. Genome, 48(6), 1070–1082. 10.1139/g05-062 PubMed DOI

Schneider, A. , Molnár, I. , & Molnár‐Láng, M. (2008). Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica, 163(1), 1–19. 10.1007/s10681-007-9624-y DOI

Schneider, A. , & Molnár‐Láng, M. (2012). Detection of various U and M chromosomes in wheat‐Aegilops biuncialis hybrids and derivatives using fluorescence in situ hybridisation and molecular markers. Czech Journal of Genetics and Plant Breeding, 48(4), 169–177. 10.17221/45/2012-cjgpb DOI

Sears, E. R. (1956). The transfer of leaf‐rust resistance from Aegilops umbellulata to wheat. Brookhaven Symposia in Biology, 9, 1–21.

Sears, E. R. (1977). An induced mutant with homoeologous pairing in common wheat. Canadian Journal of Genetics and Cytology, 19(4), 585–593. 10.1139/g77-063 DOI

Srikanta, R. , Wang, L. , Zhu, T. , Deal, K. , Huo, N. , Gu, Y. , McGuire, P. , Dvořák, J. , & Luo, M. C. (2024). Gene annotations and optical maps of the Aegilops tauschii acc. AL8/78 assembly Aet v6.0 [Data set]. DRYAD, 10.5061/dryad.bvq83bkjg DOI

van Slageren, M. W. (1994). Wild wheats: A monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Agricultural University, International Center for Agricultural Research in Dry Areas.

Vrána, J. , Cápal, P. , Číhalíková, J. , Kubaláková, M. , & Doležel, J. (2016a). Flow sorting plant chromosomes. In Kianian S. & Kianian P. (Eds.), Plant cytogenetics. Methods in molecular biology (Vol. 1429, pp. 119–134). Humana Press. 10.1007/978-1-4939-3622-9_10 PubMed DOI

Vrána, J. , Cápal, P. , Šimková, H. , Karafiátová, M. , Čížková, J. , & Doležel, J. (2016b). Flow analysis and sorting of plant chromosomes. Current Protocols in Cytometry, 78(1), 5.3.1–5.3.43. 10.1002/cpcy.9 PubMed DOI

Wang, L. , Zhu, T. , Rodriguez, J. J. , Deal, K. R. , Dubcovsky, J. , McGuire, P. , Lux, T. , Spannagl, M. , Mayer, K. , Baldrich, P. , Meyers, B. C. , Huo, N. , Gu, Y. Q. , Zhou, H. , Devos, K. M. , Bennetzen, J. L. , Unver, T. , Budak, H. , Gulick, P. J. , & Galiba, G. (2021). Aegilops tauschii genome assembly Aet v5.0 features greater sequence contiguity and improved annotation. G3 Genes|Genomes|Genetics, 11(12), jkab325. 10.1093/g3journal/jkab325 PubMed DOI PMC

Wang, S. , Wong, D. , Forrest, K. , Allen, A. , Chao, S. , Huang, B. E. , Maccaferri, M. , Salvi, S. , Milner, S. G. , Cattivelli, L. , Mastrangelo, A. M. , Whan, A. , Stephen, S. , Barker, G. , Wieseke, R. , Plieske, J. , Lillemo, M. , Mather, D. , Appels, R. , & Dolferus, R. (2014). Characterization of polyploid wheat genomic diversity using a high‐density 90,000 single nucleotide polymorphism array. Plant Biotechnology Journal, 12(6), 787–796. 10.1111/pbi.12183 PubMed DOI PMC

Wenzl, P. , Carling, J. , Kudrna, D. , Jaccoud, D. , Huttner, E. , Kleinhofs, A. , & Kilian, A. (2004). Diversity Arrays Technology (DArT) for whole‐genome profiling of barley. Proceedings of the National Academy of Sciences, 101(26), 9915–9920. 10.1073/pnas.0401076101 PubMed DOI PMC

Zhang, H. , Jia, J. , Gale, M. D. , & Devos, K. M. (1998). Relationships between the chromosomes of Aegilops umbellulata and wheat. Theoretical and Applied Genetics, 96(1), 69–75. 10.1007/s001220050710 DOI

Zhang, H. , Reader, S. M. , Liu, X. , Jia, J. Z. , Gale, M. D. , & Devos, K. M. (2001). Comparative genetic analysis of the Aegilops longissima and Ae. sharonensis genomes with common wheat. Theoretical and Applied Genetics, 103(4), 518–525. 10.1007/s001220100656 DOI

Zhang, P. , Dundas, I. S. , McIntosh, R. A. , Xu, S. S. , Park, R. F. , Gill, B. S. , & Friebe, B. (2015). Wheat–Aegilops introgressions. In Molnár‐Láng M., Ceoloni C., & Doležel J. (Eds.), Alien introgression in wheat (pp. 221–243). Springer. 10.1007/978-3-319-23494-6_9 DOI

Zhu, T. , Wang, L. , Rimbert, H. , Rodriguez, J. C. , Deal, K. R. , De Oliveira, R. , Choulet, F. , Keeble‐Gagnère, G. , Tibbits, J. , Rogers, J. , Eversole, K. , Appels, R. , Gu, Y. Q. , Mascher, M. , Dvorak, J. , & Luo, M. (2021). Optical maps refine the bread wheat Triticum aestivum cv. Chinese spring genome assembly. The Plant Journal, 107(1), 303–314. 10.1111/tpj.15289 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...