INTRODUCTION: Porcine reproductive and respiratory syndrome virus (PRRSV) emerged about 30 years ago and continues to cause major economic losses in the pork industry. The lack of effective modified live vaccines (MLV) allows the pandemic to continue. BACKGROUND AND OBJECTIVE: We have previously shown that wild strains of PRRSV affect the nascent T cell repertoire in the thymus, deplete T cell clones recognizing viral epitopes essential for neutralization, while triggering a chronic, robust, but ineffective antibody response. Therefore, we hypothesized that the current MLV are inappropriate because they cause similar damage and fail to prevent viral-induced dysregulation of adaptive immunity. METHODS: We tested three MLV strains to demonstrate that all have a comparable negative effect on thymocytes in vitro. Further in vivo studies compared the development of T cells in the thymus, peripheral lymphocytes, and antibody production in young piglets. These three MLV strains were used in a mixture to determine whether at least some of them behave similarly to the wild virus type 1 or type 2. RESULTS: Both the wild and MLV strains cause the same immune dysregulations. These include depletion of T-cell precursors, alteration of the TCR repertoire, necrobiosis at corticomedullary junctions, low body weight gain, decreased thymic cellularity, lack of virus-neutralizing antibodies, and production of non-neutralizing anti-PRRSV antibodies of different isotypes. DISCUSSION AND CONCLUSION: The results may explain why the use of current MLV in young animals may be ineffective and why their use may be potentially dangerous. Therefore, alternative vaccines, such as subunit or mRNA vaccines or improved MLV, are needed to control the PRRSV pandemic.
- MeSH
- atenuované vakcíny MeSH
- imunitní systém MeSH
- prasata MeSH
- protilátky virové MeSH
- reprodukční a respirační syndrom prasat * prevence a kontrola MeSH
- virus reprodukčního a respiračního syndromu prasat * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Interleukin-17A (IL-17) is a pro-inflammatory cytokine involved in the immune response to many pathogens playing also a role in certain chronic and autoimmune diseases. The presented study focused on the early postnatal development of IL-17 producing cells in swine. In agreement with previous studies, αβ T-helper (CD3+CD4+) and γδ T (CD3+TCRγδ+) cells were found to be the major producers of IL-17. In newborn conventional piglets, αβ T-helper cells positive for IL-17 were almost undetectable, but their frequency increased markedly with age in all issues examined, i.e., blood, spleen, and mesenteric lymph nodes (MLN). Additional analyses of CD8 and CD27 expression showed that the main αβ T-helper producers of IL-17 has CD8+CD27- phenotype in all tissues. IL-17 positive CD8+CD27+ αβ T-helper subpopulation was found only in blood and spleen. The production of IL17 in CD8-CD27+ αβ T-helper cells was always minor. In contrast, γδ T cells positive for IL-17 did not show a similar age-dependent increase in blood and spleen, whereas they increased in MLN. Because of the age-dependent increase in conventional animals, we included a comparison with germ-free piglets to show that the increase in IL-17 positive cells was clearly depended on the presence of the microbiota as the production in germ-free animals was negligible without any age-dependent increase.
- MeSH
- chronická nemoc MeSH
- diabetická noha dietoterapie farmakoterapie ošetřování terapie MeSH
- fyziologie výživy MeSH
- hojení ran účinky léků MeSH
- obvazy hydrokoloidní MeSH
- rány a poranění MeSH
- senioři MeSH
- terapie ran pomocí řízeného podtlaku MeSH
- výsledek terapie MeSH
- Check Tag
- senioři MeSH
- Publikační typ
- kazuistiky MeSH
- Klíčová slova
- polyuretanové pěny,
- MeSH
- diabetická noha * komplikace MeSH
- dolní končetina patologie MeSH
- gangréna terapie MeSH
- hojení ran * MeSH
- komplikace diabetu MeSH
- lidé MeSH
- nutriční terapie metody MeSH
- obvazy hydrokoloidní MeSH
- okluzivní ošetření rány MeSH
- senioři MeSH
- terapie ran pomocí řízeného podtlaku * metody MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- kazuistiky MeSH
Deoxynivalenol (DON)-contaminated feed represents a serious problem for pigs due to their high sensitivity to its toxicological effects. The aim of the present study was to evaluate the impact of intrauterine DON exposure on the immune system of piglets. Pure DON was intravenously administered to sows at the end of gestation (during the last 2-3 days of gestation, one dose of 300 µg per day). The plasma concentration of DON was analyzed using liquid chromatography combined with high-resolution Orbitrap-based mass spectrometry (LC-MS/MS (HR)) and selected immune parameters were monitored six times in piglets from birth to 18 weeks. DON was found in the plasma of 90% of newborn piglets at a mean concentration of 6.28 ng/mL and subsequently, at one, three, and seven weeks after birth with decreasing concentrations. Trace amounts were still present in the plasma 14 weeks after birth. Flow cytometry revealed a significant impact of DON on T lymphocyte subpopulations during the early postnatal period. Lower percentages of regulatory T cells, T helper lymphocytes, and their double positive CD4+CD8+ subset were followed by increased percentages of cytotoxic T lymphocytes and γδ T cells. The capacity to produce pro-inflammatory cytokines was also significantly lower after intrauterine DON exposure. In conclusion, this study revealed a long-term persistence of DON in the plasma of the piglets as a consequence of short-term intrauterine exposure, leading to altered immune parameters.
- MeSH
- časové faktory MeSH
- cytokiny metabolismus MeSH
- fenotyp MeSH
- gestační stáří MeSH
- imunitní systém účinky léků imunologie metabolismus MeSH
- injekce intravenózní MeSH
- maternofetální výměna látek * MeSH
- matka - expozice noxám MeSH
- mediátory zánětu metabolismus MeSH
- Sus scrofa MeSH
- T-lymfocyty - podskupiny účinky léků imunologie metabolismus MeSH
- těhotenství MeSH
- trichotheceny aplikace a dávkování krev toxicita MeSH
- zpožděný efekt prenatální expozice * MeSH
- zvířata MeSH
- Check Tag
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In attempt to identify genes that are induced in chickens by Salmonella Enteritidis we identified a new highly inducible gene, interleukin 4 induced 1 gene (IL4I1). IL4I1 reached its peak expression (458× induction) in the cecum of newly hatched chickens 4 days post-infection and remained upregulated for an additional 10 days. IL4I1 was expressed and induced in macrophages and granulocytes, both at the mRNA and protein level. IL4I1 was expressed and induced also in CD4 and γδ T-lymphocytes though at a 50-fold lower level than in phagocytes. Expression of IL4I1 was not detected in CD8 T lymphocytes or B lymphocytes. Mutation of IL4I1 in chicken HD11 macrophages did not affect their bactericidal capacity against S. Enteritidis but negatively affected their oxidative burst after PMA stimulation. We therefore propose that IL4I1 is not directly involved in bactericidal activity of phagocytes and, instead, it is likely involved in the control of inflammatory response and signaling to T and B lymphocytes.
- MeSH
- cékum imunologie MeSH
- fagocyty imunologie MeSH
- kur domácí * MeSH
- leukocyty imunologie MeSH
- nemoci drůbeže imunologie MeSH
- oxidasa L-aminokyselin metabolismus MeSH
- ptačí proteiny metabolismus MeSH
- Salmonella enteritidis fyziologie MeSH
- salmonelová infekce u zvířat imunologie MeSH
- slezina imunologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Deoxynivalenol (DON) is a mycotoxin frequently found in cereals, and pigs are one of the most sensitive farm species to DON. The aim of this study was to determine the effects of DON in very low doses on peripheral blood mononuclear cells (PBMC) and on particular lymphocyte subpopulations. The cells were exposed to 1, 10 and 100 ng/mL of DON and lymphocyte viability, proliferation, and cytokine (Interleukin (IL)-1β, IL-2, IL-8, IL-17, Interferon (IFN) γ and tumor necrosis factor (TNF) α production were studied. Cells exposed to DON for 5 days in concentrations of 1 and 10 ng/mL showed higher viability compared to control cells. After 18 h of DON (100 ng/mL) exposure, a significantly lower proliferation after mitogen stimulation was observed. In contrast, an increase of spontaneous proliferation induced by DON (100 ng/mL) was detected. After DON exposure, the expression of cytokine genes decreased, with the exception of IL-1β and IL-8, which increased after 18 h exposure to 100 ng/mL of DON. Among lymphocyte subpopulations, helper T-cells and γδ T-cells exhibiting lower production of IL-17, IFNγ and TNFα were most affected by DON exposure (10 ng/mL). These findings show that subclinical doses of DON lead to changes in immune response.
- MeSH
- cytokiny biosyntéza genetika MeSH
- exprese genu účinky léků MeSH
- kultivované buňky MeSH
- leukocyty mononukleární účinky léků imunologie MeSH
- podskupiny lymfocytů účinky léků imunologie MeSH
- prasata MeSH
- proliferace buněk účinky léků MeSH
- trichotheceny toxicita MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH