BACKGROUND: Hypoxia results in an imbalance between oxygen supply and oxygen consumption. This study utilized microdialysis to monitor changes in the energy-related metabolites lactate, pyruvate and glucose in rat muscle before, during and after 30 minutes of transient global hypoxia. Hypoxia was induced in anaesthetised rats by reducing inspired oxygen to 6% O2 in nitrogen. RESULTS: Basal values for lactate, the lactate/pyruvate ratio and glucose were 0.72 ± 0.04 mmol/l, 10.03 ± 1.16 and 3.55 ± 0.19 mmol/l (n = 10), respectively. Significant increases in lactate and the lactate/pyruvate ratio were found in the muscle after the induction of hypoxia. Maximum values of 2.26 ± 0.37 mmol/l for lactate were reached during early reperfusion, while the lactate/pyruvate ratio reached maximum values of 35.84 ± 7.81 at the end of hypoxia. Following recovery to ventilation with air, extracellular lactate levels and the lactate/pyruvate ratio returned to control levels within 30-40 minutes. Extracellular glucose levels showed no significant difference between hypoxia and control experiments. CONCLUSIONS: In our study, the complete post-hypoxic recovery of metabolite levels suggests that metabolic enzymes of the skeletal muscle and their related cellular components may be able to tolerate severe hypoxic periods without prolonged damage. The consumption of glucose in the muscle in relation to its delivery seems to be unaffected.
- MeSH
- energetický metabolismus MeSH
- glukosa metabolismus MeSH
- hypoxie etiologie metabolismus MeSH
- kosterní svaly metabolismus MeSH
- krysa rodu rattus MeSH
- kyselina mléčná metabolismus MeSH
- kyselina pyrohroznová metabolismus MeSH
- mikrodialýza MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder resulting in a lethal outcome. We studied changes in ventral horn perineuronal nets (PNNs) of superoxide dismutase 1 (SOD1) rats during the normal disease course and after the intrathecal application (5 × 10(5) cells) of human bone marrow mesenchymal stromal cells (MSCs) postsymptom manifestation. We found that MSCs ameliorated disease progression, significantly improved motor activity, and prolonged survival. For the first time, we report that SOD1 rats have an abnormal disorganized PNN structure around the spinal motoneurons and give different expression profiles of chondroitin sulfate proteoglycans (CSPGs), such as versican, aggrecan, and phosphacan, but not link protein-1. Additionally, SOD1 rats had different profiles for CSPG gene expression (Versican, Hapln1, Neurocan, and Tenascin-R), whereas Aggrecan and Brevican profiles remained unchanged. The application of MSCs preserved PNN structure, accompanied by better survival of motorneurons. We measured the concentration of cytokines (IL-1α, MCP-1, TNF-α, GM-CSF, IL-4, and IFN-γ) in the rats' cerebrospinal fluid and found significantly higher concentrations of IL-1α and MCP-1. Our results show that PNN and cytokine homeostasis are altered in the SOD1 rat model of ALS. These changes could potentially serve as biological markers for the diagnosis, assessment of treatment efficacy, and prognosis of ALS. We also show that the administration of human MSCs is a safe procedure that delays the loss of motor function and increases the overall survival of symptomatic ALS animals, by remodeling the recipients' pattern of gene expression and having neuroprotective and immunomodulatory effects.
- MeSH
- amyotrofická laterální skleróza metabolismus MeSH
- buněčná diferenciace fyziologie MeSH
- chondroitinsulfát proteoglykany metabolismus MeSH
- extracelulární matrix metabolismus MeSH
- faktor stimulující granulocyto-makrofágové kolonie metabolismus MeSH
- krysa rodu rattus MeSH
- mezenchymální kmenové buňky cytologie MeSH
- mícha metabolismus MeSH
- nervová síť cytologie MeSH
- neurony cytologie MeSH
- TNF-alfa metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Focal cortical dysplasias (FCDs) of the brain are recognized as a frequent cause of intractable epilepsy. To contribute to the current understanding of the mechanisms of epileptogenesis in FCD, our study provides evidence that not only cellular alterations and synaptic transmission, but also changed diffusion properties of the extracellular space (ECS), induced by modified extracellular matrix (ECM) composition and astrogliosis, might be involved in the generation or spread of seizures in FCD. The composition of the ECM in FCD and non-malformed cortex (in 163 samples from 62 patients) was analyzed immunohistochemically and correlated with the corresponding ECS diffusion parameter values determined with the real-time iontophoretic method in freshly resected cortex (i.e. the ECS volume fraction and the geometrical factor tortuosity, describing the hindrances to diffusion in the ECS). The ECS in FCD was shown to differ from that in non-malformed cortex, mainly by the increased accumulation of certain ECM molecules (tenascin R, tenascin C, and versican) or by their reduced expression (brevican), and by the presence of an increased number of astrocytic processes. The consequent increase of ECS diffusion barriers observed in both FCD type I and II (and, at the same time, the enlargement of the ECS volume in FCD type II) may alter the diffusion of neuroactive substances through the ECS, which mediates one of the important modes of intercellular communication in the brain - extrasynaptic volume transmission. Thus, the changed ECM composition and altered ECS diffusion properties might represent additional factors contributing to epileptogenicity in FCD.
- MeSH
- astrocyty metabolismus MeSH
- brevican analýza MeSH
- difuze MeSH
- dítě MeSH
- dospělí MeSH
- extracelulární matrix chemie metabolismus MeSH
- extracelulární prostor chemie metabolismus MeSH
- iontoforéza metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- malformace mozkové kůry metabolismus patologie MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nemoci mozku metabolismus patologie MeSH
- neokortex patologie MeSH
- předškolní dítě MeSH
- tenascin analýza MeSH
- versikany analýza MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Most hypotheses concerning the mechanisms underlying seizure activity in focal cortical dysplasia (FCD) are based on alterations in synaptic transmission and glial dysfunction. However, neurons may also communicate by extrasynaptic transmission, which was recently found to affect epileptiform activity under experimental conditions and which is mediated by the diffusion of neuroactive substances in the extracellular space (ECS). The ECS diffusion parameters were therefore determined using the real-time iontophoretic method in human neocortical tissue samples obtained from surgically treated epileptic patients. The obtained values of the extracellular space volume fraction and tortuosity were then correlated with the histologicaly assessed type of cortical malformation (FCD type I or II). While the extracellular volume remained unchanged (FCD I) or larger (FCD II) than in normal/control tissue, tortuosity was significantly increased in both types of dysplasia, indicating the presence of additional diffusion barriers and compromised diffusion, which might be another factor contributing to the epileptogenicity of FCD.
- MeSH
- dítě MeSH
- dospělí MeSH
- epilepsie patologie MeSH
- extracelulární prostor fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- malformace mozkové kůry patologie MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozková kůra abnormality patologie MeSH
- neurony patologie fyziologie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The real-time iontophoretic method using tetramethylammonium-selective microelectrodes and diffusion-weighted magnetic resonance imaging were used to measure the extracellular space volume fraction alpha, tortuosity lambda and apparent diffusion coefficient of water (ADC(W)) 240 min after the administration of pilocarpine in urethane-anaesthetized rats. The obtained data were correlated with extracellular lactate, glucose, and glutamate concentrations and the lactate/pyruvate-ratio, determined by intracerebral microdialysis. The control values of alpha and lambda were 0.19+/-0.004 and 1.58+/-0.01, respectively. Following pilocarpine application, alpha decreased to 0.134+/-0.012 100 min later. Thereafter alpha increased, reaching 0.176+/-0.009 140 min later. No significant changes in lambda were observed during the entire time course of the experiment. ADC(W) was significantly decreased 100 min after pilocarpine application (549+/-8 microm(2) s(-1)) compared to controls (603+/-11 microm(2) s(-1)); by the end of the experiments, ADC(W) had returned to control values. The basal cortical levels of lactate, the lactate/pyruvate ratio, glucose and glutamate were 0.61+/-0.05 mmol/l, 33.16+/-4.26, 2.42+/-0.13 mmol/l and 6.55+/-1.31 micromol/l. Pilocarpine application led to a rise in lactate, the lactate/pyruvate ratio and glutamate levels, reaching 2.92+/-0.60 mmol/l, 84.80+/-11.72 and 22.39+/-5.85 micromol/l within about 100 min, with a subsequent decrease to control values 140 min later. The time course of changes in glucose levels was different, with maximal levels of 3.49+/-0.24 mmol/l reached 40 min after pilocarpine injection and a subsequent decrease to 1.25+/-0.40 mmol/l observed 200 min later. Pathologically increased neuronal activity induced by pilocarpine causes cell swelling followed by a reduction in the ECS volume fraction, which can contribute to the accumulation of toxic metabolites and lead to the start of epileptic discharges.
- MeSH
- agonisté muskarinových receptorů MeSH
- difuzní magnetická rezonance MeSH
- draslík metabolismus MeSH
- elektrický šok MeSH
- energetický metabolismus fyziologie účinky léků fyziologie MeSH
- extracelulární prostor metabolismus účinky léků MeSH
- financování organizované MeSH
- glukosa metabolismus MeSH
- krysa rodu rattus MeSH
- kyselina mléčná MeSH
- membránové potenciály fyziologie MeSH
- mikrodialýza MeSH
- mozek - chemie fyziologie účinky léků MeSH
- mozková kůra metabolismus patofyziologie MeSH
- pilokarpin MeSH
- potkani Wistar MeSH
- sodík metabolismus MeSH
- status epilepticus chemicky indukované metabolismus patofyziologie MeSH
- tělesná voda metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
Stem cell transplants into spinal cord lesions may help to improve regeneration and spinal cord function. Clinical studies are necessary for transferring preclinical findings from animal experiments to humans. We investigated the transplantation of unmanipulated autologous bone marrow in patients with transversal spinal cord injury (SCI) with respect to safety, therapeutic time window, implantation strategy, method of administration, and functional improvement. We report data from 20 patients with complete SCI who received transplants 10 to 467 days postinjury. The follow-up examinations were done at 3, 6, and 12 months after implantation by two independent neurologists using standard neurological classification of SCI, including the ASIA protocol, the Frankel score, the recording of motor and somatosensory evoked potentials, and MRI evaluation of lesion size. We compared intra-arterial (via catheterization of a. vertebralis) versus intravenous administration of all mononuclear cells in groups of acute (10-30 days post-SCI, n=7) and chronic patients (2-17 months postinjury, n=13). Improvement in motor and/or sensory functions was observed within 3 months in 5 of 6 patients with intra-arterial application, in 5 of 7 acute, and in 1 of 13 chronic patients. Our case study shows that the implantation of autologous bone marrow cells appears to be safe, as there have been no complications following implantation to date (11 patients followed up for more than 2 years), but longer follow-ups are required to determine that implantation is definitively safe. Also, we cannot yet confirm that the observed beneficial effects were due to the cell therapy. However, the outcomes following transplantation in acute patients, and in one chronic patient who was in stable condition for several months prior to cell implantation, are promising. It is evident that transplantation within a therapeutic window of 3-4 weeks following injury will play an important role in any type of stem cell SCI treatment. Trials involving a larger population of patients and different cell types are needed before further conclusions can be drawn.
- MeSH
- akutní nemoc MeSH
- autologní transplantace MeSH
- chronická nemoc MeSH
- dospělí MeSH
- elektrofyziologie MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- následné studie MeSH
- obnova funkce fyziologie MeSH
- poranění míchy chirurgie patofyziologie patologie MeSH
- regenerace nervu fyziologie MeSH
- transplantace kostní dřeně * metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- práce podpořená grantem MeSH
It has been shown that global anoxia leads to dramatic changes in the diffusion properties of the extracellular space (ECS). In this study, we investigated how changes in ECS volume and geometry in the rat somatosensory cortex during and after transient hypoxia/ischemia correlate with extracellular concentrations of energy-related metabolites and glutamate. Adult male Wistar rats (n = 12) were anesthetized and subjected to hypoxia/ischemia for 30 min (ventilation with 10% oxygen and unilateral carotid artery occlusion). The ECS diffusion parameters, volume fraction and tortuosity, were determined from concentration-time profiles of tetramethylammonium applied by iontophoresis. Concentrations of lactate, glucose, pyruvate and glutamate in the extracellular fluid (ECF) were monitored by microdialysis (n = 9). During hypoxia/ischemia, the ECS volume fraction decreased from initial values of 0.19 +/- 0.03 (mean +/- S.E.M.) to 0.07 +/- 0.01 and tortuosity increased from 1.57 +/- 0.01 to 1.88 +/- 0.03. During reperfusion the volume fraction returned to control values within 20 min and then increased to 0.23 +/- 0.01, while tortuosity only returned to original values (1.53 +/- 0.06). The concentrations of lactate and glutamate, and the lactate/pyruvate ratio, substantially increased during hypoxia/ischemia, followed by continuous recovery during reperfusion. The glucose concentration decreased rapidly during hypoxia/ischemia with a subsequent return to control values within 20 min of reperfusion. We conclude that transient hypoxia/ischemia causes similar changes in ECS diffusion parameters as does global anoxia and that the time course of the reduction in ECS volume fraction correlates with the increase of extracellular concentration of glutamate. The decrease in the ECS volume fraction can therefore contribute to an increased accumulation of toxic metabolites, which may aggravate functional deficits and lead to damage of the central nervous system (CNS).
- MeSH
- energetický metabolismus MeSH
- extracelulární prostor metabolismus MeSH
- glukosa metabolismus MeSH
- kinetika MeSH
- krysa rodu rattus MeSH
- kyselina glutamová metabolismus MeSH
- kyselina mléčná metabolismus MeSH
- kyselina pyrohroznová metabolismus MeSH
- mikrodialýza MeSH
- modely nemocí na zvířatech MeSH
- mozková hypoxie a ischemie metabolismus patofyziologie MeSH
- mozková kůra metabolismus patofyziologie MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- MeSH
- extracelulární prostor metabolismus MeSH
- gliom metabolismus patologie MeSH
- iontoforéza metody využití MeSH
- lidé MeSH
- mladiství MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- Publikační typ
- srovnávací studie MeSH