Embryonic stem cells and induced pluripotent stem cells provided us with fascinating new knowledge in recent years. Mechanistic insight into intricate regulatory circuitry governing pluripotency stemness and disclosing parallels between pluripotency stemness and cancer instigated numerous studies focusing on roles of pluripotency transcription factors, including Oct4, Sox2, Klf4, Nanog, Sall4 and Tfcp2L1, in cancer. Although generally well substantiated as tumour-promoting factors, oncogenic roles of pluripotency transcription factors and their clinical impacts are revealing themselves as increasingly complex. In certain tumours, both Oct4 and Sox2 behave as genuine oncogenes, and reporter genes driven by composite regulatory elements jointly recognized by both the factors can identify stem-like cells in a proportion of tumours. On the other hand, cancer stem cells seem to be biologically very heterogeneous both among different tumour types and among and even within individual tumours. Pluripotency transcription factors are certainly implicated in cancer stemness, but do not seem to encompass its entire spectrum. Certain cancer stem cells maintain their stemness by biological mechanisms completely different from pluripotency stemness, sometimes even by engaging signalling pathways that promote differentiation of pluripotent stem cells. Moreover, while these signalling pathways may well be antithetical to stemness in pluripotent stem cells, they may cooperate with pluripotency factors in cancer stem cells - a paradigmatic example is provided by the MAPK-AP-1 pathway. Unexpectedly, forced expression of pluripotency transcription factors in cancer cells frequently results in loss of their tumour-initiating ability, their phenotypic reversion and partial epigenetic normalization. Besides the very different signalling contexts operating in pluripotent and cancer stem cells, respectively, the pronounced dose dependency of reprogramming pluripotency factors may also contribute to the frequent loss of tumorigenicity observed in induced pluripotent cancer cells. Finally, contradictory cell-autonomous and non-cell-autonomous effects of various signalling molecules operate during pluripotency (cancer) reprogramming. The effects of pluripotency transcription factors in cancer are thus best explained within the concept of cancer stem cell heterogeneity.
- MeSH
- buněčná diferenciace genetika MeSH
- embryonální kmenové buňky MeSH
- indukované pluripotentní kmenové buňky * metabolismus MeSH
- lidé MeSH
- nádory * genetika metabolismus MeSH
- oktamerní transkripční faktor 3 genetika metabolismus MeSH
- pluripotentní kmenové buňky * MeSH
- přeprogramování buněk genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
Sarcomas are a heterogeneous group of mesenchymal tumours, with a great variability in their clinical behaviour. While our knowledge of sarcoma initiation has advanced rapidly in recent years, relatively little is known about mechanisms of sarcoma progression. JUN-murine fibrosarcoma progression series consists of four sarcoma cell lines, JUN-1, JUN-2, JUN-2fos-3, and JUN-3. JUN-1 and -2 were established from a single tumour initiated in a H2K/v-jun transgenic mouse, JUN-3 originates from a different tumour in the same animal, and JUN-2fos-3 results from a targeted in vitro transformation of the JUN-2 cell line. The JUN-1, -2, and -3 cell lines represent a linear progression from the least transformed JUN-2 to the most transformed JUN-3, with regard to all the transformation characteristics studied, while the JUN-2fos-3 cell line exhibits a unique transformation mode, with little deregulation of cell growth and proliferation, but pronounced motility and invasiveness. The invasive sarcoma sublines JUN-2fos-3 and JUN-3 show complex metabolic profiles, with activation of both mitochondrial oxidative phosphorylation and glycolysis and a significant increase in spared respiratory capacity. The specific transcriptomic profile of invasive sublines features very complex biological relationships across the identified genes and proteins, with accentuated autocrine control of motility and angiogenesis. Pharmacologic inhibition of one of the autocrine motility factors identified, Ccl8, significantly diminished both motility and invasiveness of the highly transformed fibrosarcoma cell. This progression series could be greatly valuable for deciphering crucial aspects of sarcoma progression and defining new prognostic markers and potential therapeutic targets.
- Publikační typ
- časopisecké články MeSH
Neural stem cells are fundamental to development of the central nervous system (CNS)-as well as its plasticity and regeneration-and represent a potential tool for neuro transplantation therapy and research. This study is focused on examination of the proliferation dynamic and fate of embryonic neural stem cells (eNSCs) under differentiating conditions. In this work, we analyzed eNSCs differentiating alone and in the presence of sonic hedgehog (SHH) or triiodothyronine (T3) which play an important role in the development of the CNS. We found that inhibition of the SHH pathway and activation of the T3 pathway increased cellular health and survival of differentiating eNSCs. In addition, T3 was able to increase the expression of the gene for the receptor smoothened (Smo), which is part of the SHH signaling cascade, while SHH increased the expression of the T3 receptor beta gene (Thrb). This might be the reason why the combination of SHH and T3 increased the expression of the thyroxine 5-deiodinase type III gene (Dio3), which inhibits T3 activity, which in turn affects cellular health and proliferation activity of eNSCs.
- MeSH
- jodidperoxidasa genetika metabolismus MeSH
- kultivované buňky MeSH
- myší embryonální kmenové buňky cytologie metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nervové kmenové buňky cytologie metabolismus MeSH
- neurogeneze * MeSH
- proteiny hedgehog genetika metabolismus MeSH
- receptor Smoothened genetika metabolismus MeSH
- trijodthyronin metabolismus MeSH
- tyreoidální hormony, receptory beta genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Attributing to their pathophysiological role and stability in biological samples, microRNAs (miRNAs) have the potential to become valuable predictive markers for non-small cell lung cancer (NSCLC). Samples of biopsy tissue constitute suitable material for miRNA profiling with the aim of predicting the effect of palliative chemotherapy. The present study group included 81 patients (74 males, 7 females, all smokers or former smokers) with the squamous cell carcinoma (SCC) histological subtype of NSCLC at a late stage (3B or 4). All patients received palliative chemotherapy based on platinum derivatives in combination with paclitaxel or gemcitabine. The expression of 17 selected miRNAs was measured by reverse transcription-quantitative polymerase chain reaction in tumor tissue macrodissected from formalin-fixed paraffin-embedded (FFPE) tissue samples. To predict the effect of palliative chemotherapy, the association between gene expression levels and overall survival (OS) time was analyzed. From the 17 miRNAs of interest, low expression levels of miR-342 and high expression levels of miR-34a and miR-224 were associated with a reduced OS time in subgroups of patients based on smoking status and treatment modality. Using cluster analysis, associations between combinations of miR-34a, -224 and -342 expression levels with patient survival were identified. The present study revealed that patients with the simultaneous high expression of miR-224 and -342 had a similar prognostic outcome to those with the low expression of miR-224 and -342, which was significantly reduced, compared with patients exhibiting high expression of either miR-224 or miR-342 with low expression of the other. We hypothesize that the effect of a particular miRNA is dependent on the expression level of other members of the miRNA network. This finding appears to complicate survival analyses based on individual miRNAs as markers. In conclusion, the present study provides evidence that specific miRNAs were associated with OS time, which may be candidate predictors for the effectiveness of palliative treatment in SCC lung cancer patients. This objective can be better achieved by combining more markers together than by using individual miRNAs.
- Publikační typ
- časopisecké články MeSH
Classical eyeblink conditioning is an experimental model widely used for the study of the neuronal mechanisms underlying the acquisition of new motor and cognitive skills. There are two principal interpretations of the role of the cerebellum in the learning of eyelid conditioned responses (CRs). One considers that the cerebellum is the place where this learning is acquired and stored, while the second suggests that the cerebellum is mostly involved in the proper performance of acquired CRs, implying that there must be other brain areas involved in the learning process. We checked the timing of cerebellar interpositus nucleus (IPN) neurons' firing rate with eyelid CRs in both wild-type (WT) and Lurcher (a model of cerebellar cortex degeneration) mice. We used delay and trace conditioning paradigms. WT mice presented a better execution for delay vs. trace conditioning and also for these two paradigms than did Lurcher mice. IPN neurons were activated during CRs following the activation of the orbicularis oculi muscle. Firing patterns of IPN neurons were altered in Lurcher mice. In conclusion, the cerebellum seems to be mostly related with the performance of conditioned responses, rather than with their acquisition.
- MeSH
- akční potenciály fyziologie MeSH
- časové faktory MeSH
- implantované elektrody MeSH
- klasické podmiňování fyziologie MeSH
- modely u zvířat MeSH
- mozečková jádra cytologie fyziologie MeSH
- mrkání fyziologie MeSH
- myši - mutanty neurologické MeSH
- myši MeSH
- neurony fyziologie MeSH
- podmiňování (oční víčka) fyziologie MeSH
- stereotaktické techniky přístrojové vybavení MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Amyloid-beta (Aβ) induced mitochondrial dysfunction is one of the major causes of neuronal toxicity in Alzheimer's disease. A number of recent reports suggest involvement of mitochondrial alterations through intracellular accumulation of oligomeric Aβ. These mitochondrial alterations include increased Reactive Oxygen Species (ROS), mt-DNA depletion, decreased oxidative phosphorylation and ATP production, membrane depolarization, reduced number of mitochondria etc. All these defects cumulatively caused neural toxicity and alterations in cellular energy homeostasis. On the other hand, anti-inflammatory drug aspirin is reported to promote both mitochondrial biogenesis and improvement in cellular energy status. METHODS: Taking altogether the mentioned clues, we evaluated protective effect of aspirin, if any on oligomeric Aβ42 induced toxicity and mitochondrial alterations in differentiated neuronal cells. RESULTS: A significant reduction in neuronal viability and increased apoptosis was observed in Aβ42 treated cells, as evident by MTT assay, apoptosis ELISA and immunofluorescence from β-III tubulin antibody staining of neuronal cells. A concomitant decrease was also observed in the intensity of mitotracker red FM staining and mt-DNA to nDNA ratio, suggesting mitochondrial membrane depolarization and/or reduced number of mitochondria along with depletion in mt-DNA. However, simultaneous treatment of 5 μM aspirin to oligomeric Aβ42 treated cells protected them from mitochondrial dysfunction and neurotoxicity. CONCLUSION: We suggest mitochondrial biogenesis, changes in mitochondrial membrane potential and / or inhibition of Aβ42 aggregation by aspirin as possible underlying mechanism(s).
- MeSH
- amyloidní beta-protein toxicita MeSH
- analýza rozptylu MeSH
- apoptóza účinky léků MeSH
- Aspirin farmakologie MeSH
- buněčná diferenciace účinky léků MeSH
- karcinom patologie MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- mitochondriální DNA genetika metabolismus MeSH
- mitochondrie účinky léků patologie MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové kmenové buňky účinky léků MeSH
- neurony účinky léků ultrastruktura MeSH
- neuroprotektivní látky farmakologie MeSH
- peptidové fragmenty toxicita MeSH
- tubulin metabolismus MeSH
- variabilita počtu kopií segmentů DNA účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND/AIM: To date, many studies have suggested that thymidylate synthase (TS) could be used as a prognostic and predictive marker in non-small cell lung cancer (NSCLC) patients. However, results have been contradictory. The aim of this study was to evaluate TS mRNA levels in tumor tissue of NSCLC patients who underwent complete surgical resection and to analyze its prognostic and predictive potential. MATERIALS AND METHODS: The study group consisted of 64 patients who underwent curative lung resection. Paired lung tissue samples were taken directly from the tumor tissue and from adjacent, histologically cancer-free lung tissue. The quantitative estimation of TS expression was performed by reverse transcription real-time polymerase chain reaction (RT-qPCR). The relationship between TS expression level and disease-free interval (DFI) and overall survival (OS) was analyzed. RESULTS: There was significantly higher TS expression in NSCLC tumor tissue comparing to normal lung tissue. In the group of patients who received adjuvant chemotherapy based on platinum derivatives in combination with paclitaxel or gemcitabine, we found shorter DFI (p=0.0473) and OS (p=0.0053) in those with high expression of TS. CONCLUSION: Our results demonstrated the relationship of high tumor tissue TS levels to adverse prognosis in patients undergoing adjuvant chemotherapy. TS is a non-specific tumor marker with respect to NSCLC, therefore we think that its best use would be as a member of the panel of predictors of adjuvant treatment efficacy.
- MeSH
- adjuvantní chemoterapie MeSH
- Kaplanův-Meierův odhad MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery genetika MeSH
- nádory plic farmakoterapie genetika chirurgie MeSH
- nemalobuněčný karcinom plic farmakoterapie genetika chirurgie MeSH
- prognóza MeSH
- protokoly antitumorózní kombinované chemoterapie MeSH
- regulace genové exprese u nádorů * MeSH
- senioři MeSH
- thymidylátsynthasa genetika MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Hereditary cerebellar ataxias are severe diseases for which therapy is currently not sufficiently effective. One of the possible therapeutic approaches could be neurotransplantation. Lurcher mutant mice are a natural model of olivocerebellar degeneration representing a tool to investigate its pathogenesis as well as experimental therapies for hereditary cerebellar ataxias. The effect of intracerebellar transplantation of embryonic cerebellar solid tissue or cell suspension on motor performance in adult Lurcher mutant and healthy wild-type mice was studied. Brain-derived neurotrophic factor level was measured in the graft and adult cerebellar tissue. Gait analysis and rotarod, horizontal wire, and wooden beam tests were carried out 2 or 6 months after the transplantation. Higher level of the brain-derived neurotrophic factor was found in the Lurcher cerebellum than in the embryonic and adult wild-type tissue. A mild improvement of gait parameters was found in graft-treated Lurcher mice. The effect was more marked in cell suspension grafts than in solid transplants and after the longer period than after the short one. Lurcher mice treated with cell suspension and examined 6 months later had a longer hind paw stride (4.11 vs. 3.73 mm, P < 0.05) and higher swing speed for both forepaws (52.46 vs. 32.79 cm/s, P < 0.01) and hind paws (63.46 vs. 43.67 cm/s, P < 0.001) than controls. On the other hand, classical motor tests were not capable of detecting clearly the change in the motor performance. No strong long-lasting negative effect of the transplantation was seen in wild-type mice, suggesting that the treatment has no harmful impact on the healthy cerebellum.
- MeSH
- časové faktory MeSH
- chůze (způsob) MeSH
- metoda rotující tyčky MeSH
- mozeček embryologie metabolismus transplantace MeSH
- mozkový neurotrofický faktor metabolismus MeSH
- multisystémová atrofie patofyziologie terapie MeSH
- myši - mutanty neurologické MeSH
- myši inbrední C57BL MeSH
- myši inbrední CBA MeSH
- myši transgenní MeSH
- pohybová aktivita MeSH
- spinocerebelární degenerace patofyziologie terapie MeSH
- transplantace fetální tkáně metody MeSH
- transplantace mozkové tkáně metody MeSH
- výsledek terapie MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- dědičné degenerativní poruchy nervového systému * MeSH
- farmakoterapie * MeSH
- lidé MeSH
- myši transgenní * MeSH
- myši MeSH
- nemoci mozečku * diagnóza etiologie genetika patologie terapie MeSH
- spinocerebelární ataxie * diagnóza terapie MeSH
- transplantace mezenchymálních kmenových buněk * metody využití MeSH
- výzkum * MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- Publikační typ
- práce podpořená grantem MeSH