- Publikační typ
- abstrakt z konference MeSH
The investigation into human butyrylcholinesterase (hBChE) inhibitors as therapeutic agents for Alzheimer's disease (AD) holds significant promise, addressing both symptomatic relief and disease progression. In the pursuit of novel drug candidates with a selective BChE inhibition pattern, we focused on naturally occurring template structures, specifically Amaryllidaceae alkaloids of the carltonine-type. Herein, we explored a series of compounds implementing an innovative chemical scaffold built on the 3- and 4-benzyloxy-benzylamino chemotype. Notably, compounds 28 (hBChE IC50 = 0.171 ± 0.063 μM) and 33 (hBChE IC50 = 0.167 ± 0.018 μM) emerged as top-ranked hBChE inhibitors. In silico simulations elucidated the binding modes of these compounds within hBChE. CNS availability was predicted using the BBB score algorithm, corroborated by in vitro permeability assessments with the most potent derivatives. Compound 33 was also inspected for aqueous solubility, microsomal and plasma stability. Chemoinformatics analysis validated these hBChE inhibitors for oral administration, indicating favorable gastrointestinal absorption in compliance with Lipinski's and Veber's rules. Safety assessments, crucial for the chronic administration typical in AD treatment, were conducted through cytotoxicity testing on human neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cell lines.
- Publikační typ
- časopisecké články MeSH
The current study imposes a new class of organophosphorus (OP)-inhibited cholinesterase reactivators by conceptualizing a family of asymmetric bisoximes with various reactivating scaffolds. Several novel nucleophilic warheads were investigated, putting forward 29 novel reactivating options, by evaluating their nucleophilicity and ability to directly decompose OP compounds. Adopting the so-called zwitterionic strategy, 17 mono-oxime and nine bisoxime reactivators were discovered with major emphasis on the bifunctional-moiety approach. Compounds were compared with clinically used standards and other known experimentally highlighted reactivators. Our results clearly favor the concept of asymmetric bisoximes as leading reactivators in terms of efficacy and versatility. These top-ranked compounds were characterized in detail by reactivation kinetics parameters and evaluated for potential CNS availability. The highlighted molecules 55, 57, and 58 with various reactivating warheads, surpassed the reactivating potency of pralidoxime and several notable uncharged reactivators. The versatility of lead drug candidate 55 was also inspected on OP-inhibited butyrylcholinesterase, revealing a much higher rate compared to existing clinical antidotes.
- MeSH
- acetylcholinesterasa metabolismus MeSH
- antidota chemie farmakologie MeSH
- butyrylcholinesterasa * metabolismus chemie MeSH
- cholinesterasové inhibitory chemie farmakologie MeSH
- kinetika MeSH
- lidé MeSH
- organofosforové sloučeniny chemie MeSH
- otrava organofosfáty * farmakoterapie MeSH
- oximy * chemie farmakologie MeSH
- reaktivátory cholinesterázy * chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A-series agent A-234 belongs to a new generation of nerve agents. The poisoning of a former Russian spy Sergei Skripal and his daughter in Salisbury, England, in March 2018 led to the inclusion of A-234 and other A-series agents into the Chemical Weapons Convention. Even though five years have already passed, there is still very little information on its chemical properties, biological activities, and treatment options with established antidotes. In this article, we first assessed A-234 stability in neutral pH for subsequent experiments. Then, we determined its inhibitory potential towards human recombinant acetylcholinesterase (HssAChE; EC 3.1.1.7) and butyrylcholinesterase (HssBChE; EC 3.1.1.8), the ability of HI-6, obidoxime, pralidoxime, methoxime, and trimedoxime to reactivate inhibited cholinesterases (ChEs), its toxicity in rats and therapeutic effects of different antidotal approaches. Finally, we utilized molecular dynamics to explain our findings. The results of spontaneous A-234 hydrolysis showed a slow process with a reaction rate displaying a triphasic course during the first 72 h (the residual concentration 86.2%). A-234 was found to be a potent inhibitor of both human ChEs (HssAChE IC50 = 0.101 ± 0.003 μM and HssBChE IC50 = 0.036 ± 0.002 μM), whereas the five marketed oximes have negligible reactivation ability toward A-234-inhibited HssAChE and HssBChE. The acute toxicity of A-234 is comparable to that of VX and in the context of therapy, atropine and diazepam effectively mitigate A-234 lethality. Even though oxime administration may induce minor improvements, selected oximes (HI-6 and methoxime) do not reactivate ChEs in vivo. Molecular dynamics implies that all marketed oximes are weak nucleophiles, which may explain the failure to reactivate the A-234 phosphorus-serine oxygen bond characterized by low partial charge, in particular, HI-6 and trimedoxime oxime oxygen may not be able to effectively approach the A-234 phosphorus, while pralidoxime displayed low interaction energy. This study is the first to provide essential experimental preclinical data on the A-234 compound.
- MeSH
- acetylcholinesterasa MeSH
- antidota farmakologie MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory toxicita MeSH
- fosfor MeSH
- krysa rodu rattus MeSH
- kyslík MeSH
- lidé MeSH
- oximy farmakologie MeSH
- pralidoximové sloučeniny * MeSH
- pyridinové sloučeniny farmakologie MeSH
- reaktivátory cholinesterázy * farmakologie MeSH
- taurin analogy a deriváty MeSH
- trimedoxim farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
nestr.
Project is aimed at the development of new combined micellar decontamination systems based on quaternary nitrogen compounds having detergent and active-decontamination properties, which will cause faster hydrolysis of chemical warfare agents. In the case of biological agents, these molecules are strong disinfectants, able to destabilize pathogen membrane structures. Several decontamination mixtures will be prepared and tested both in vitro and in vivo for their decontamination and disinfection properties against selected chemical and biological agents. The expected result of the project is efficient decontamination solution for personal skin decontamination with good tolerability.
Projekt je zaměřen na vývoj nových kombinovaných micelárních dekontaminačních systémů, založených na sloučeninách obsahující kvarterní dusík, které mají jak detergentní tak i aktivní dekontaminační vlastnosti, které napomohou rychlejší hydrolýze bojových chemických látek. V případě biologických agens tyto látky vykazují silné dezinfekční účinky, protože jsou schopny narušit membránové struktury patogenů. V rámci projektu budou připraveny dekontaminační směsi, u kterých budou metodami in vitro a in vivo hodnoceny jejich dekontaminační a dezinfekční vlastnosti vůči vybraným chemickým a biologickým agens. Předpokládaným výstupem projektu je účinné dekontaminační činidlo vhodné pro osobní dekontaminaci pokožky s dobrou snášenlivostí.
- Klíčová slova
- dekontaminace, chemické agens, biologické agens, bojové chemické látky, viry, bakterie, decontamination, chemical agents, biological agents, chemical warfare agents, viruses, bacteria,
- NLK Publikační typ
- závěrečné zprávy o řešení grantu AZV MZ ČR
"Novichok" refers to a new group of nerve agents called the A-series agents. Their existence came to light in 2018 after incidents in the UK and again in 2020 in Russia. They are unique organophosphorus-based compounds developed during the Cold War in a program called Foliant in the USSR. This review is based on original chemical entities from Mirzayanov's memoirs published in 2008. Due to classified research, a considerable debate arose about their structures, and hence, various structural moieties were speculated. For this reason, the scientific literature is highly incomplete and, in some cases, contradictory. This review critically assesses the information published to date on this class of compounds. The scope of this work is to summarize all the available and relevant information, including the physicochemical properties, chemical synthesis, mechanism of action, toxicity, pharmacokinetics, and medical countermeasures used to date. The environmental stability of A-series agents, the lack of environmentally safe decontamination, their high toxicity, and the scarcity of information on post-contamination treatment pose a challenge for managing possible incidents.
- MeSH
- kontaminace léku * MeSH
- nervová bojová látka * toxicita MeSH
- organofosforové sloučeniny MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Organophosphorus compounds (OPs) involving life-threatening nerve agents (NA) have been known for several decades. Despite a clear mechanism of their lethality caused by the irreversible inhibition of acetylcholinesterase (AChE) and manifested via overstimulation of peripheral nicotinic and muscarinic acetylcholine (ACh) receptors, the mechanism for central neurotoxicity responsible for acute or delayed symptoms of the poisoning has not been thoroughly uncovered. One of the reasons is the lack of a suitable model. In our study, we have chosen the SH-SY5Y model in both the differentiated and undifferentiated state to study the effects of NAs (GB, VX and A234). The activity of expressed AChE in cell lysate assessed by Ellman's method showed 7.3-times higher activity in differentiated SH-SY5Y cells in contrast to undifferentiated cells, and with no involvement of BuChE as proved by ethopropazine (20 μM). The activity of AChE was found to be, in comparison to untreated cells, 16-, 9.3-, and 1.9-times lower upon A234, VX, and GB (100 μM) administration respectively. The cytotoxic effect of given OPs expressed as the IC50 values for differentiated and undifferentiated SH-SY5Y, respectively, was found 12 mM and 5.7 mM (A234), 4.8 mM and 1.1 mM (VX) and 2.6 mM and 3.8 mM (GB). In summary, although our results confirm higher AChE expression in the differentiated SH-SY5Y cell model, the such higher expression does not lead to a more pronounced NA cytotoxic effect. On the contrary, higher expression of AChE may attenuate NA-induced cytotoxicity by scavenging the NA. Such finding highlights a protective role for cholinesterases by scavenging Novichoks (A-agents). Second, we confirmed the mechanism of cytotoxicity of NAs, including A-agents, can be ascribed rather to the non-specific effects of OPs than to AChE-mediated effects.
Butyrylcholinesterase (BChE) is one of the most frequently implicated enzymes in the advanced stage of Alzheimer's disease (AD). As part of our endeavors to develop new drug candidates for AD, we have focused on natural template structures, namely the Amaryllidaceae alkaloids carltonine A and B endowed with high BChE selectivity. Herein, we report the design, synthesis, and in vitro evaluation of 57 novel highly selective human BChE (hBChE) inhibitors. Most synthesized compounds showed hBChE inhibition potency ranging from micromolar to low nanomolar scale. Compounds that revealed BChE inhibition below 100 nM were selected for detailed biological investigation. The CNS-targeted profile of the presented compounds was confirmed theoretically by calculating the BBB score algorithm, these data were corroborated by determining the permeability in vitro using PAMPA-assay for the most active derivatives. The study highlighted compounds 87 (hBChE IC50 = 3.8 ± 0.2 nM) and 88 (hBChE IC50 = 5.7 ± 1.5 nM) as the top-ranked BChE inhibitors. Compounds revealed negligible cytotoxicity for the human neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cell lines compared to BChE inhibitory potential. A crystallographic study was performed to inspect the binding mode of compound 87, revealing essential interactions between 87 and hBChE active site. In addition, multidimensional QSAR analyses were applied to determine the relationship between chemical structures and biological activity in a dataset of designed agents. Compound 87 is a promising lead compound with potential implications for treating the late stages of AD.
- MeSH
- acetylcholinesterasa metabolismus MeSH
- alkaloidy amarylkovitých * farmakologie MeSH
- Alzheimerova nemoc * farmakoterapie MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory chemie MeSH
- lidé MeSH
- neuroblastom * farmakoterapie MeSH
- simulace molekulového dockingu MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH