In this study, we present a high-resolution dataset and bioinformatic analysis of the proteome of Bacillus subtilis 168 trp+ (BSB1) during germination and spore outgrowth. Samples were collected at 14 different time points (ranging from 0 to 130 min) in three biological replicates after spore inoculation into germination medium. A total of 2191 proteins were identified and categorized based on their expression kinetics. We observed four distinct clusters that were analyzed for functional categories and KEGG pathways annotations. The examination of newly synthesized proteins between successive time points revealed significant changes, particularly within the first 50 min. The dataset provides an information base that can be used for modeling purposes and inspire the design of new experiments.
Bacteria have evolved structured RNAs that can associate with RNA polymerase (RNAP). Two of them have been known so far-6S RNA and Ms1 RNA but it is unclear if any other types of RNAs binding to RNAP exist in bacteria. To identify all RNAs interacting with RNAP and the primary σ factors, we have established and performed native RIP-seq in Bacillus subtilis, Corynebacterium glutamicum, Streptomyces coelicolor, Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis. Besides known 6S RNAs in B. subtilis and Ms1 in M. smegmatis, we detected MTS2823, a homologue of Ms1, on RNAP in M. tuberculosis. In C. glutamicum, we discovered novel types of structured RNAs that associate with RNAP. Furthermore, we identified other species-specific RNAs including full-length mRNAs, revealing a previously unknown landscape of RNAs interacting with the bacterial transcription machinery.
- MeSH
- Bacillus subtilis genetika metabolismus MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- bakteriální RNA * metabolismus genetika MeSH
- Corynebacterium glutamicum genetika metabolismus MeSH
- DNA řízené RNA-polymerasy * metabolismus genetika MeSH
- genetická transkripce MeSH
- konformace nukleové kyseliny MeSH
- Mycobacterium smegmatis genetika metabolismus enzymologie MeSH
- Mycobacterium tuberculosis genetika metabolismus MeSH
- nekódující RNA MeSH
- regulace genové exprese u bakterií MeSH
- sigma faktor * metabolismus genetika MeSH
- Streptomyces coelicolor genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
During sporulation, Bacillus subtilis forms an asymmetric septum, dividing the cell into two compartments, a mother cell and a forespore. The site of asymmetric septation is linked to the membrane where FtsZ and SpoIIE initiate the formation of the Z-ring and the E-ring, respectively. These rings then serve as a scaffold for the other cell division and peptidoglycan synthesizing proteins needed to build the septum. However, despite decades of research, not enough is known about how the asymmetric septation site is determined. Here, we identified and characterized the interaction between SpoIIE and RefZ. We show that these two proteins transiently colocalize during the early stages of asymmetric septum formation when RefZ localizes primarily from the mother cell side of the septum. We propose that these proteins and their interplay with the spatial organization of the chromosome play a role in controlling asymmetric septum positioning.
σ factors are essential parts of bacterial RNA polymerase (RNAP) as they allow to recognize promotor sequences and initiate transcription. Domain 1.1 of vegetative σ factors occupies the primary channel of RNAP and also prevents binding of the σ factor to promoter DNA alone. Here, we show that domain 1.1 of Bacillus subtilis σA exists in more structurally distinct variants in dynamic equilibrium. The major conformation at room temperature is represented by a previously reported well-folded structure solved by nuclear magnetic resonance (NMR), but 4% of the protein molecules are present in a less thermodynamically favorable state. We show that this population increases with temperature and we predict its significant elevation at higher but still biologically relevant temperatures. We characterized the minor state of the domain 1.1 using specialized methods of NMR. We found that, in contrast to the major state, the detected minor state is partially unfolded. Its propensity to form secondary structure elements is especially decreased for the first and third α helices, while the second α helix and β strand close to the C-terminus are more stable. We also analyzed thermal unfolding of the domain 1.1 and performed functional experiments with full length σA and its shortened version lacking domain 1.1 ( σA_Δ1.1 ). The results revealed that while full length σA increases transcription activity of RNAP with increasing temperature, transcription with σA_Δ1.1 remains constant. In summary, this study reveals conformational dynamics of domain 1.1 and provides a basis for studies of its interaction with RNAP and effects on transcription regulation.
- MeSH
- amidy metabolismus MeSH
- Bacillus subtilis * enzymologie MeSH
- DNA řízené RNA-polymerasy * chemie metabolismus MeSH
- molekulární modely MeSH
- proteinové domény MeSH
- protony MeSH
- rozbalení proteinů * MeSH
- sigma faktor * chemie metabolismus MeSH
- teplota * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Rifampicin is a clinically important antibiotic that binds to, and blocks the DNA/RNA channel of bacterial RNA polymerase (RNAP). Stalled, nonfunctional RNAPs can be removed from DNA by HelD proteins; this is important for maintenance of genome integrity. Recently, it was reported that HelD proteins from high G+C Actinobacteria, called HelR, are able to dissociate rifampicin-stalled RNAPs from DNA and provide rifampicin resistance. This is achieved by the ability of HelR proteins to dissociate rifampicin from RNAP. The HelR-mediated mechanism of rifampicin resistance is discussed here, and the roles of HelD/HelR in the transcriptional cycle are outlined. Moreover, the possibility that the structurally similar HelD proteins from low G+C Firmicutes may be also involved in rifampicin resistance is explored. Finally, the discovery of the involvement of HelR in rifampicin resistance provides a blueprint for analogous studies to reveal novel mechanisms of bacterial antibiotic resistance.
The alarming rise of bacterial antibiotic resistance requires the development of new compounds. Such compounds, lipophosphonoxins (LPPOs), were previously reported to be active against numerous bacterial species, but serum albumins abolished their activity. Here we describe the synthesis and evaluation of novel antibacterial compounds termed LEGO-LPPOs, loosely based on LPPOs, consisting of a central linker module with two attached connector modules on either side. The connector modules are then decorated with polar and hydrophobic modules. We performed an extensive structure-activity relationship study by varying the length of the linker and hydrophobic modules. The best compounds were active against both Gram-negative and Gram-positive species including multiresistant strains and persisters. LEGO-LPPOs act by first depleting the membrane potential and then creating pores in the cytoplasmic membrane. Importantly, their efficacy is not affected by the presence of serum albumins. Low cytotoxicity and low propensity for resistance development demonstrate their potential for therapeutic use.
Five 2'-deoxyribonucleoside triphosphates (dNTPs) derived from epigenetic pyrimidines (5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, 5-hydroxymethyluracil, and 5-formyluracil) were prepared and systematically studied as substrates for nine DNA polymerases in competition with natural dNTPs by primer extension experiments. The incorporation of these substrates was evaluated by a restriction endonucleases cleavage-based assay and by a kinetic study of single nucleotide extension. All of the modified pyrimidine dNTPs were good substrates for the studied DNA polymerases that incorporated a significant percentage of the modified nucleotides into DNA even in the presence of natural nucleotides. 5-Methylcytosine dNTP was an even better substrate for most polymerases than natural dCTP. On the other hand, 5-hydroxymethyl-2'-deoxyuridine triphosphate was not the best substrate for SPO1 DNA polymerase, which naturally synthesizes 5hmU-rich genomes of the SPO1 bacteriophage. The results shed light onto the possibility of gene silencing through recycling and random incorporation of epigenetic nucleotides and into the replication of modified bacteriophage genomes.
- MeSH
- 5-methylcytosin * MeSH
- deoxyribonukleosidy MeSH
- DNA-dependentní DNA-polymerasy metabolismus MeSH
- DNA metabolismus MeSH
- epigeneze genetická MeSH
- nukleotidy metabolismus MeSH
- pyrimidinové nukleotidy * MeSH
- pyrimidiny MeSH
- restrikční enzymy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Bacteria employ small non-coding RNAs (sRNAs) to regulate gene expression. Ms1 is an sRNA that binds to the RNA polymerase (RNAP) core and affects the intracellular level of this essential enzyme. Ms1 is structurally related to 6S RNA that binds to a different form of RNAP, the holoenzyme bearing the primary sigma factor. 6S RNAs are widespread in the bacterial kingdom except for the industrially and medicinally important Actinobacteria. While Ms1 RNA was identified in Mycobacterium, it is not clear whether Ms1 RNA is present also in other Actinobacteria species. Here, using a computational search based on secondary structure similarities combined with a linguistic gene synteny approach, we identified Ms1 RNA in Streptomyces. In S. coelicolor, Ms1 RNA overlaps with the previously annotated scr3559 sRNA with an unknown function. We experimentally confirmed that Ms1 RNA/scr3559 associates with the RNAP core without the primary sigma factor HrdB in vivo. Subsequently, we applied the computational approach to other Actinobacteria and identified Ms1 RNA candidates in 824 Actinobacteria species, revealing Ms1 RNA as a widespread class of RNAP binding sRNAs, and demonstrating the ability of our multifactorial computational approach to identify weakly conserved sRNAs in evolutionarily distant genomes.
- Publikační typ
- časopisecké články MeSH
5-(β-d-Glucopyranosyloxymethyl)-2'-deoxyuridine and -cytidine 5'-O-triphosphates were prepared and used for polymerase-mediated (primer extension or PCR) synthesis of DNA containing glucosylated 5-hydroxymethyluracil (5hmU) or 5-hydroxymethyluracil (5hmC). The presence of any glucosylated pyrimidines fully protected DNA from cleavage by type II restriction endonucleases. On the other hand, while the presence of glucosylated 5hmU completely inhibited transcription by bacterial (Escherichia coli) RNA polymerase, the DNA containing the corresponding glucosylated 5hmC allowed a similar level of transcription as natural DNA. This suggests different roles of these hypermodified bases in the epigenetic regulation of transcription in bacteriophages or kinetoplastid parasites. Consequently, enzymatic glucosylation of 5hmC-containing DNA can be used for tuning of transcription activity.
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
Nestr.
Local carriers of antibacterial (AB) compounds are used in the musculoskeletal (MS) infection therapy. High doses of antibiotics (ATB) have been added to bone cement (other materials). Now other AB compounds are looked for in the same indication due to disadvantages of ATB. Lipophosphonoxins (LPPOs) with a wide AB scope and a minimal risk of resistance development have been discovered in the Czech Republic recently. The goal of the proposed project is: 1) to test their ability to absorb on standard biomaterials used in orthopedics and traumatology (ORT-T); 2) to describe the modified material; including experiments on animals; 3) to test its toxicity/immunogenicity; 4) to modify the properties of current/to develop new LPPOs. Besides an excellent AB effect, the materials must meet all the requirements for biomaterials. Their clinical application will improve efficacy of the MS infections surgical therapy. In particular, they will decrease the rate of recurrent infection, morbidity/mortality in patients having ORT-T surgeries and decrease costs related to the therapy of MS infectio...
V terapii infekcí muskuloskeletálního (MS) aparátu používáme lokální nosiče antibakteriálních (AB) látek. Dosud jsme spoléhali na antibiotika (ATB), která se ve vysokých dávkách přidávala do kostního cementu (jiných materiálů). Vzhledem k nevýhodám ATB se hledají jiné AB látky ve stejné indikaci. V ČR byly nedávno objeveny lipofosfonoxiny (LPPO), které mají široký AB záběr a minimální riziko vzniku rezistence. Cílem navrhovaného projektu je: 1) ověřit jejich schopnost navázat se na standardní biomateriály používané v ortopedii a traumatologii (ORT-T); 2) popsat AB vlastnosti takto upraveného materiálu; včetně experimentu na zvířeti; 3) určit jeho toxicitu/ imunogenicitu; 4) upravit vlastnosti stávajících/vyvinout nové LPPO. Kromě excelentního AB efektu musí řešení splňovat všechny další nároky kladené na biomateriály. Jejich nasazením v klinické praxi se zlepší účinnost operační terapie infekcí MS aparátu. Konkrétně dojde k snížení četnosti recidiv infekce, snížení morbidity/mortality pacientů podstupujících ORT-T operace a snížení nákladů spojených s terapií infekcí MS aparátu.
- Klíčová slova
- lipofosfonoxiny,
- MeSH
- antibakteriální látky terapeutické užití MeSH
- biokompatibilní materiály terapeutické užití MeSH
- hodnocení léčiv MeSH
- infekce farmakoterapie MeSH
- kontrola infekce metody MeSH
- lidé MeSH
- muskuloskeletální nemoci farmakoterapie prevence a kontrola MeSH
- nosiče léků terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- hodnotící studie MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- infekční lékařství
- ortopedie
- farmacie a farmakologie
- NLK Publikační typ
- závěrečné zprávy o řešení grantu AZV MZ ČR