The purpose of this study is to elucidate the genetic causes and phenotypic presentation of nonfamilial tall stature (nFTS) and to compare these findings with those of familial tall stature (FTS) from the same population that was previously studied. Children with nFTS (defined as a height > + 2 SDs with both parents' heights < + 2 SDs) underwent endocrine and anthropometric examinations and genetic testing (karyotyping, SHOX gene dosage analysis and next-generation sequencing of 786 growth-associated genes). Exome sequencing was performed in patients with negative genetic results and a height > + 3 SDs. A total of 55 children with nFTS were enrolled. The median height was + 2.8 SD (2.4-3.2 SD), and the median midparental height was + 0.7 SD (0.4-0.9 SD). Genetic causes of tall stature were identified in 6/55 (11%) children. Specifically, four children had gonosomal aneuploidy (47,XXY [2x], 47,XXX, 48,XXXX), one had a heterozygous complex rearrangement including SHOX gene duplication, and one carried a pathogenic variant in the TGFBR2 gene leading to Loeys-Dietz syndrome. A genetic cause of tall stature was significantly less common in nFTS (11%) than in our previously published cohort with FTS (32%). Conclusion: Cytogenetic abnormalities were the predominant genetic alteration identified in children with nFTS, confirming the justification of karyotype analysis in this cohort. The probability of genetic alterations was greater in children with FTS than in those with nFTS. Our findings suggest that the current guidelines for complex investigation are efficient for children with nFTS but need revision in children with FTS. What is known - what is new • Although tall stature is generally considered beneficial, it can be associated with health risks which need to be recognized in time. Tall stature without intellectual impairment is usually considered to be polygenic. • However, the cause of familial tall stature was monogenic more often than it was thought previously. • Children with non-familial and apparently non-syndromic tall stature have never been systematically investigated. • Monogenic causes of non-familial tall stature were observed in 11% of patients, including a participant with Loeys-Dietz syndrome.
- MeSH
- chromozomální aberace * MeSH
- dítě MeSH
- fenotyp MeSH
- genetické testování MeSH
- karyotypizace MeSH
- lidé MeSH
- mladiství MeSH
- poruchy růstu * genetika MeSH
- předškolní dítě MeSH
- protein SHOX MeSH
- sekvenování exomu MeSH
- tělesná výška * genetika MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Klíčová slova
- posturální deformity,
- MeSH
- antropometrie metody MeSH
- dítě MeSH
- hlava * abnormality MeSH
- kefalometrie metody MeSH
- kraniosynostózy * MeSH
- lebka abnormality patologie MeSH
- lidé MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- MeSH
- automatizované zpracování dat metody MeSH
- dítě MeSH
- lidé MeSH
- prognóza * MeSH
- růst MeSH
- tělesná výška * fyziologie MeSH
- určení kostního věku * metody MeSH
- vývoj dítěte MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
- MeSH
- achondroplazie patologie MeSH
- antropometrie * metody MeSH
- familiární hypofosfatemická rachitida patologie MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- Marfanův syndrom patologie MeSH
- Noonanové syndrom patologie MeSH
- poruchy růstu * diagnóza patologie MeSH
- tělesné váhy a míry * MeSH
- vývoj dítěte MeSH
- Check Tag
- lidé MeSH
CONTEXT: Familial tall stature (FTS) is considered to be a benign variant of growth with a presumed polygenic etiology. However, monogenic disorders with possible associated pathological features could also be hidden under the FTS phenotype. OBJECTIVE: To elucidate the genetic etiology in families with FTS and to describe their phenotype in detail. METHODS: Children with FTS (the life-maximum height in both the child and his/her taller parent > 2 SD for age and sex) referred to the Endocrinology center of Motol University Hospital were enrolled into the study. Their DNA was examined cytogenetically and via a next-generation sequencing panel of 786 genes associated with growth. The genetic results were evaluated by the American College of Molecular Genetics and Genomics guidelines. All of the participants underwent standard endocrinological examination followed by specialized anthropometric evaluation. RESULTS: In total, 34 children (19 girls) with FTS were enrolled in the study. Their median height and their taller parent's height were 3.1 SD and 2.5 SD, respectively. The genetic cause of FTS was elucidated in 11/34 (32.4%) children (47,XXX and 47,XYY karyotypes, SHOX duplication, and causative variants in NSD1 [in 2], SUZ12 [in 2], FGFR3, CHD8, GPC3, and PPP2R5D genes). Ten children had absent syndromic signs and 24 had dysmorphic features. CONCLUSION: Monogenic (and cytogenetic) etiology of FTS can be found among children with FTS. Genetic examination should be considered in all children with FTS regardless of the presence of dysmorphic features.
- MeSH
- dítě MeSH
- fenotyp MeSH
- genetické testování * metody MeSH
- lidé MeSH
- mladiství MeSH
- poruchy růstu genetika diagnóza MeSH
- předškolní dítě MeSH
- tělesná výška * genetika MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Because the causes of combined pituitary hormone deficiency (CPHD) are complex, the etiology of congenital CPHD remains unknown in most cases. The aim of the study was to identify the genetic etiology of CPHD in a well-defined single-center cohort. In total, 34 children (12 girls) with congenital CPHD (growth hormone (GH) deficiency and impaired secretion of at least one other pituitary hormone) treated with GH in our center were enrolled in the study. Their median age was 11.2 years, pre-treatment height was -3.2 s.d., and maximal stimulated GH was 1.4 ug/L. Of them, 30 had central adrenal insufficiency, 27 had central hypothyroidism, ten had hypogonadotropic hypogonadism, and three had central diabetes insipidus. Twenty-six children had a midline defect on MRI. Children with clinical suspicion of a specific genetic disorder underwent genetic examination of the gene(s) of interest via Sanger sequencing or array comparative genomic hybridization. Children without a detected causal variant after the first-tier testing or with no suspicion of a specific genetic disorder were subsequently examined using next-generation sequencing growth panel. Variants were evaluated by the American College of Medical Genetics standards. Genetic etiology was confirmed in 7/34 (21%) children. Chromosomal aberrations were found in one child (14q microdeletion involving the OTX2 gene). The remaining 6 children had causative genetic variants in the GLI2, PROP1, POU1F1, TBX3, PMM2, and GNAO1 genes, respectively. We elucidated the cause of CPHD in a fifth of the patients. Moreover, our study supports the PMM2 gene as a candidate gene for CPHD and suggests pathogenic variants in the GNAO1 gene as a potential novel genetic cause of CPHD.
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: The SALL4 gene encodes a transcription factor that is essential for early embryonic cellular differentiation of the epiblast and primitive endoderm. It is required for the development of neural tissue, kidney, heart, and limbs. Pathogenic SALL4 variants cause Duane-radial ray syndrome (Okihiro syndrome), acro-renal-ocular syndrome, and Holt-Oram syndrome. We report a family with vertical transmission of a SALL4 pathogenic variant leading to radial hypoplasia and kidney dystopia in several generations with additional growth hormone deficiency (GHD) in the proband. CASE PRESENTATION: Our male proband was born at the 39th week of gestation. He was born small for gestational age (SGA; birth weight 2,550 g, -2.2 SDS; length 47 cm, -2.0 SDS). He had bilateral asymmetrical radial ray malformation (consisting of radial hypoplasia, ulnar flexure, and bilateral aplasia of the thumb) and pelvic kidney dystopia, but no cardiac malformations, clubfoot, ocular coloboma, or Duane anomaly. He was examined for progressive short stature at the age of 3.9 years, where his IGF-1 was 68 μg/L (-1.0 SD), and growth hormone (GH) after stimulation 6.2 μg/L. Other pituitary hormones were normal. A brain CT revealed normal morphology of the cerebral midline and the pituitary. He had a dental anomaly - a central mandibular ectopic canine. MRI could not be done due to the presence of metal after multiple corrective plastic surgeries of his hands. His mother's and father's heights are 152.3 cm (-2.4 SD) and 177.8 cm (-0.4 SD), respectively. His father has a milder malformation of the forearm. The affected paternal grandfather (height 164 cm; -2.3 SD) has a radial ray defect with missing opposition of the thumb. The family reports a similar phenotype of radial dysplasia in the paternal grandfather's mother. The proband started GH therapy at age 6.5 years when his height was 109 cm (-2.8 SDS) and he experienced catch-up growth as expected in GHD. Puberty started spontaneously at the age of 12.5 years. At age 13, his height was 158.7 cm (-0.2 SDS). Whole-exome sequencing revealed a nonsense variant in the SALL4 gene c.1717C>T (p.Arg573Ter) in the proband, his father, and paternal grandfather. CONCLUSION: This is the first observation of a patient with a congenital upper limb defect due to a pathogenic SALL4 variant who has isolated GHD with no apparent cerebral or facial midline anomaly and has been successfully treated with growth hormone.
- MeSH
- dospělí MeSH
- Duaneův retrakční syndrom * genetika patologie MeSH
- fenotyp MeSH
- horní končetina patologie MeSH
- hypopituitarismus * genetika MeSH
- ledviny patologie MeSH
- lidé MeSH
- lidský růstový hormon * MeSH
- předškolní dítě MeSH
- transkripční faktory genetika MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- Publikační typ
- kazuistiky MeSH
- MeSH
- kraniosynostózy * chirurgie diagnóza etiologie klasifikace MeSH
- lidé MeSH
- novorozenec MeSH
- prognóza MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- přehledy MeSH
Osteoporosis occurs in every third individual after simultaneous pancreas kidney transplantation (SPKT). Currently used bone measures insufficiently predict their fracture risk. Lumbar spine Trabecular bone score (TBS) and distal radius areal and volumetric bone mineral density (BMD) were monitored for the first time in patients with type 1 diabetes and chronic renal failure after SPKT with steroid-sparing protocol. In 33 subjects (mean age 43.4 ± 9.8 years), dual-energy X-ray absorptiometry and peripheral quantitative computed tomography were performed just after SPKT (baseline) and one and three years later. While TBS Z-scores increased (-1.1 ± 1.2 and -0.3 ± 1.0; p˂0.001, at baseline and year three, respectively), trabecular volumetric BMD Z-scores at distal radius metaphysis did not change during the study (-1.3 ± 1.3 and -1.3 ± 1.0; p = 0.38). Similarly, areal BMD Z-scores increased at lumbar spine, total hip and femoral neck (all p < 0.01), but not at the distal radius. SPKT induced bone measures' improvement at lumbar spine and hip but not at distal radius. Before suggesting changes in current clinical care, predictive value of individual bone measures or its combination for fracture risk assessment remains to be elucidated.
- Publikační typ
- časopisecké články MeSH