Gout and hyperuricemia increase cardiovascular disease risk, highlighting the need for improved risk stratification. In this pilot study, we evaluated the Coronary Event Risk Test (CERT) in 94 hyperuricemic and 196 gout patients, and 53 controls. Plasma ceramides were determined by liquid chromatography-mass spectrometry. Elevated CERT scores (≥7) occurred in 11.7 % (2-fold increase) of hyperuricemic and 31.12 % (5.5-fold increase) of gout patients compared to controls. Additionally, both hyperuricemic and gout patients with increased CERT also exhibited higher levels of inflammation and atherogenic index of plasma, both of which were significantly associated with CERT. Incorporating CERT into routine care may enhance risk stratification and guide targeted interventions in this patient population.
- MeSH
- biologické markery krev MeSH
- ceramidy * krev MeSH
- chromatografie kapalinová MeSH
- dna (nemoc) * krev diagnóza komplikace MeSH
- dospělí MeSH
- hodnocení rizik MeSH
- hyperurikemie * krev diagnóza komplikace MeSH
- kardiovaskulární nemoci * diagnóza krev etiologie epidemiologie MeSH
- kyselina močová * krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- metody pro podporu rozhodování * MeSH
- pilotní projekty MeSH
- prediktivní hodnota testů MeSH
- prognóza MeSH
- rizikové faktory kardiovaskulárních chorob MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Mismatched nucleobase uracil is commonly repaired through the base excision repair initiated by DNA uracil glycosylases. The data presented in this study strongly indicate that the nuclear uracil-N-glycosylase activity and nuclear protein content in human cell lines is highest in the S phase of the cell cycle and that its distribution kinetics partially reflect the DNA replication activity in replication foci. In this respect, the data demonstrate structural changes of the replication focus related to the uracil-N-glycosylase distribution several dozens of minutes before end of its replication. The analysis also showed that very popular synchronisation protocols based on the double thymidine block can result in changes in the UNG2 content and uracil excision rate. In response, we propose a new method for the description of the changes of the content and the activity of different cell components during cell cycle without the necessity to use synchronisation protocols.
OBJECTIVE: The laboratory diagnosis of inherited metabolic disorders (IMD) has undergone significant development in recent decades, mainly due to the use of mass spectrometry, which allows rapid multicomponent analysis of a wide range of metabolites. Combined with advanced software tools, the diagnosis becomes more efficient as a benefit for both physicians and patients. METHODS: A hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry assay for determination of urinary purines, pyrimidines, N-acylglycines, N-acetylated amino acids, sugars, sugar alcohols and other diagnostically important biomarkers was developed and validated. Evaluation of the results consisting of utilisation of robust scaling and advanced visualization tools is simple and even suitable for urgent requirements. RESULTS: The developed method, covering 65 biomarkers, provides a comprehensive diagnostic platform for 51 IMD. For most analytes, linearity with R2 > 0.99, intra and inter-day accuracy between 80 and 120 % and precision lower than 20 % were achieved. Diagnostic workflow was evaluated on 47 patients and External Quality Assurance samples involving a total of 24 different IMD. Over seven years, more than 2300 urine samples from patients suspected for IMD have been routinely analysed. CONCLUSIONS: This method offers the advantage of a broad coverage of intermediate metabolites of interest and therefore may be a potential alternative and simplification for clinical laboratories that use multiple methods for screening these markers.
Deoxycytidine analogues (dCas) are widely used for the treatment of malignant diseases. They are commonly inactivated by cytidine deaminase (CDD), or by deoxycytidine monophosphate deaminase (dCMP deaminase). Additional metabolic pathways, such as phosphorylation, can substantially contribute to their (in)activation. Here, a new technique for the analysis of these pathways in cells is described. It is based on the use of 5-ethynyl 2'-deoxycytidine (EdC) and its conversion to 5-ethynyl 2'-deoxyuridine (EdU). Its use was tested for the estimation of the role of CDD and dCMP deaminase in five cancer and four non-cancer cell lines. The technique provides the possibility to address the aggregated impact of cytidine transporters, CDD, dCMP deaminase, and deoxycytidine kinase on EdC metabolism. Using this technique, we developed a quick and cheap method for the identification of cell lines exhibiting a lack of CDD activity. The data showed that in contrast to the cancer cells, all the non-cancer cells used in the study exhibited low, if any, CDD content and their cytidine deaminase activity can be exclusively attributed to dCMP deaminase. The technique also confirmed the importance of deoxycytidine kinase for dCas metabolism and indicated that dCMP deaminase can be fundamental in dCas deamination as well as CDD. Moreover, the described technique provides the possibility to perform the simultaneous testing of cytotoxicity and DNA replication activity.
OBJECTIVES: The analysis of organic acids in urine is an important part of the diagnosis of inherited metabolic disorders (IMDs), for which gas chromatography coupled with mass spectrometry is still predominantly used. METHODS: Ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for urinary organic acids, acylcarnitines and acylglycines was developed and validated. Sample preparation consists only of dilution and the addition of internal standards. Raw data processing is quick and easy using selective scheduled multiple reaction monitoring mode. A robust standardised value calculation as a data transformation together with advanced automatic visualisation tools are applied for easy evaluation of complex data. RESULTS: The developed method covers 146 biomarkers consisting of organic acids (n=99), acylglycines (n=15) and acylcarnitines (n=32) including all clinically important isomeric compounds present. Linearity with r2>0.98 for 118 analytes, inter-day accuracy between 80 and 120 % and imprecision under 15 % for 120 analytes were achieved. Over 2 years, more than 800 urine samples from children tested for IMDs were analysed. The workflow was evaluated on 93 patient samples and ERNDIM External Quality Assurance samples involving a total of 34 different IMDs. CONCLUSIONS: The established LC-MS/MS workflow offers a comprehensive analysis of a wide range of organic acids, acylcarnitines and acylglycines in urine to perform effective, rapid and sensitive semi-automated diagnosis of more than 80 IMDs.
- MeSH
- chromatografie kapalinová metody MeSH
- dítě MeSH
- lidé MeSH
- metabolické nemoci * MeSH
- organické látky MeSH
- průběh práce MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Stanovení hladin lipidů představuje rutinní servis poskytovaný laboratořemi klinické biochemie. Zahrnuje však jen několik parametrů jako jsou triacylglyceroly, cholesterol a lipoproteinové částice. Díky rozvoji hmotnostní spektrometrie vznikl samostatný odbor lipidomika, který umožňuje komplexní popis a kvantifikaci lipidomu skýtajícího stovky individuálních molekul. Nadějným směrem využití lipidomiky v rutinní laboratorní diagnostice se v posledních letech ukazuje oblast kardiovaskulárních chorob. Poměry hladin vybraných ceramidů a fosfatidylcholinů v plasmě jsou kombinovány k vyhodnocení skóre CERT1, CERT2 a dalších, které slouží k predikci komplikací a úmrtí pacientů s kardiovaskulárními chorobami. V tomto přehledovém článku bude blíže popsána výše uvedená problematika a diskutován potenciál lipidomiky v rutinní laboratorní diagnostice.
The determination of lipid levels is a routine service provided by clinical biochemistry laboratories. It commonly includes several parameters such as triacylglycerols, cholesterol and lipoprotein particles. However, with the development of mass spectrometry, a separate field of lipidomics has emerged, which allows the comprehensive description and quantification of a lipidome containing hundreds of individual molecules. A promising direction for the use of lipidomics in routine laboratory diagnostics has emerged in recent years in the field of cardiovascular disease. Ratios of plasma levels of selected ceramides and phosphatidylcholines are combined to evaluate CERT1, CERT2 and other scores to predict events and death in patients with cardiovascular disease. This review article will elaborate on the above issues and discuss the potential of lipidomics in routine laboratory diagnostics.
Lipidomics as a branch of metabolomics provides unique information on the complex lipid profile in biological materials. In clinically focused studies, hundreds of lipids together with available clinical information proved to be an effective tool in the discovery of biomarkers and understanding of pathobiochemistry. However, despite the introduction of lipidomics nearly twenty years ago, only dozens of big data studies using clinical lipidomics have been published to date. In this review, we discuss the lipidomics workflow, statistical tools, and the challenges of standartisation. The consequent summary divided into major clinical areas of cardiovascular disease, cancer, diabetes mellitus, neurodegenerative and liver diseases is demonstrating the importance of clinical lipidomics. In these publications, the potential of lipidomics for prediction, diagnosis or finding new targets for the treatment of selected diseases can be seen. The first of these results have already been implemented in clinical practice in the field of cardiovascular diseases, while in other areas we can expect the application of the results summarized in this review in the near future.
- MeSH
- big data MeSH
- biologické markery metabolismus MeSH
- lidé MeSH
- lipidomika * MeSH
- metabolismus lipidů MeSH
- metabolomika metody MeSH
- nádory * diagnóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Antiphospholipid syndrome (APS) is a hypercoagulable state accompanied by the presence of heterogeneous antiphospholipid antibodies (aPL), which nonspecifically affect hemostasis by the presence of lupus anticoagulans (LA), anticardiolipin antibodies (aCL), antibodies against β2-glycoprotein-I (anti-β2GPI), but also non-criteria antibodies such as antibodies against β2-glycoprotein-I domain I (anti-DI), anti-phosphatidylserine/prothrombin (anti-PS/PT), anti-annexin V, and many others. The main target of the antibodies is the activated protein C (APC) system, the elimination of which can manifest itself as a thrombotic complication. The aim of this study was to determine the thrombogenicity of antibodies using a modified protein C-activated thrombin generation assay (TGA) on a group of 175 samples suspected of APS. TGA was measured with/without APC and the ratio of both measurements was evaluated (as for APC resistance), where a cut-off was calculated ≤4.5 (90th percentile) using 21 patients with heterozygous factor V Leiden mutation (FV Leiden heterozygous). Our study demonstrates the well-known fact that multiple positivity of different aPLs is a more severe risk for thrombosis than single positivity. Of the single antibody positivity, LA antibodies are the most serious (p value < 0.01), followed by aCL and their subgroup anti-DI (p value < 0.05). Non-criteria antibodies anti-annexin V and anti-PT/PS has a similar frequency occurrence of thrombogenicity as LA antibodies but without statistical significance or anti-β2GPI1 positivity. The modified TGA test can help us identify patients in all groups who are also at risk for recurrent thrombotic and pregnancy complications; thus, long-term prophylactic treatment is appropriate. For this reason, it is proving increasingly beneficial to include the determination antibodies in combination with modified TGA test.
- MeSH
- antifosfolipidové protilátky MeSH
- antifosfolipidový syndrom * komplikace MeSH
- antikardiolipinové protilátky MeSH
- beta-2-glykoprotein I MeSH
- fosfatidylseriny MeSH
- lidé MeSH
- protein C MeSH
- protrombin MeSH
- těhotenství MeSH
- trombin MeSH
- trombóza * etiologie MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The effect of direct oral anticoagulants (DOAC) on laboratory tests dependent on the production of their targets, factor IIa and factor Xa, is a well-known problem and can cause both false positive and negative results. In particular, the situation in patients who develop lupus anticoagulant (LA) antibodies is highly complex. To evaluate the effectiveness of DOAC therapy in lupus-positive patients, 31 samples were enrolled in this retrospective study. All patient samples were spiked with three types of DOAC (dabigatran, DABI; rivaroxaban, RIVA; and apixaban, API) in a concentration that significantly influenced the screening test for LA and thus can mask the presence of LA. Subsequently, the DOAC was always unbound by the DOAC-Stop procedure. DOAC levels before and after binding were determined by functional assays, followed by liquid chromatography coupled with mass spectrometry (LC-MS) analysis. METHODS: The determination of DOAC levels was performed by direct thrombin assay and determination of anti-Xa activity with specific calibration as functional tests for DABI and xabans (API and RIVA). To determine concentration levels of API, DABI, and RIVA, our in-house LC-MS method was used. RESULTS: The results of LA-positive samples show significant differences between functional tests and the LC-MS method both before and after DOAC binding. CONCLUSIONS: The acute findings of the presence of LA-type antibodies fundamentally affects the determination of DOAC by functional tests, and in this case, it is necessary to use LC-MS analysis to determine the true value. If patients treated with DOAC develop LA of medium and higher titers, we do not recommend checking DOAC levels with functional tests.
- Publikační typ
- časopisecké články MeSH