Whenever an artificial surface comes into contact with blood, proteins are rapidly adsorbed onto its surface. This phenomenon, termed fouling, is then followed by a series of undesired reactions involving activation of complement or the coagulation cascade and adhesion of leukocytes and platelets leading to thrombus formation. Thus, considerable efforts are directed towards the preparation of fouling-resistant surfaces with the best possible hemocompatibility. Herein, a comprehensive hemocompatibility study after heparinized blood contact with seven polymer brushes prepared by surface-initiated atom transfer radical polymerization is reported. The resistance to fouling is quantified and thrombus formation and deposition of blood cellular components on the coatings are analyzed. Moreover, identification of the remaining adsorbed proteins is performed via mass spectroscopy to elucidate their influence on the surface hemocompatibility. Compared with an unmodified glass surface, the grafting of polymer brushes minimizes the adhesion of platelets and leukocytes and prevents the thrombus formation. The fouling from undiluted blood plasma is reduced by up to 99%. Most of the identified proteins are connected with the initial events of foreign body reaction towards biomaterial (coagulation cascade proteins, complement component, and inflammatory proteins). In addition, several proteins that are not previously linked with blood-biomaterial interaction are presented and discussed.
Non-specific protein adsorption (fouling) triggers a number of deleterious events in the application of biomaterials. Antifouling polymer brushes successfully suppress fouling, however for some coatings an extremely high variability of fouling for different donors remains unexplained. The authors report that in the case of poly(2-hydroxyethyl methacrylate) (poly(HEMA)) this variability is due to the complement system activation that causes massive acceleration in the fouling kinetics of blood plasma. Using plasma from various donors, the fouling kinetics on poly(HEMA) is analyzed and correlated with proteins identified in the deposits on the surface and with the biochemical compositions of the plasma. The presence of complement components in fouling deposits and concentrations of C3a in different plasmas indicate that the alternative complement pathway plays a significant role in the fouling on poly(HEMA) through the "tick-over" mechanism of spontaneous C3 activation. The generated C3b binds to the poly(HEMA) surface and amplifies complement activation locally. Heat-inactivated plasma prevents accelerated fouling kinetics, confirming the central role of complement activation. The results highlight the need to take into account the variability between individuals when assessing interactions between biomaterials and blood plasma, as well as the importance of the mechanistic insight that can be gained from protein identification.
Currently, one of the most promising treatments of lipopolysaccharides (LPS)-induced sepsis is based on hemofiltration. Nevertheless, proteins rapidly adsorbed on the artificial surface of membranes which leads to activation of coagulation impairing effective scavenging of the endotoxins. To overcome this challenge, we designed polymer-brush-coated microparticles displaying antifouling properties and functionalized them with polymyxin B (PMB) to specifically scavenge LPS the most common endotoxin. Poly[( N-(2-hydroxypropyl) methacrylamide)- co-(carboxybetaine methacrylamide)] brushes were grafted from poly(glycidyl methacrylate) microparticles using photoinduced single-electron transfer living radical polymerization (SET-LRP). Notably, only parts-per-million of copper catalyst were necessary to achieve brushes able to repel adsorption of proteins from blood plasma. The open porosity of the particles, accessible to polymerization, enabled us to immobilize sufficient PMB to selectively scavenge LPS from blood plasma.
- MeSH
- adsorpce MeSH
- akrylamidy metabolismus MeSH
- biokompatibilní potahované materiály farmakologie MeSH
- bioznečištění prevence a kontrola MeSH
- epoxidové sloučeniny metabolismus MeSH
- krevní plazma metabolismus MeSH
- lidé MeSH
- lipopolysacharidy metabolismus MeSH
- methakryláty metabolismus MeSH
- polymerizace účinky léků MeSH
- polymery chemie MeSH
- polymyxin B farmakologie MeSH
- povrchové vlastnosti účinky léků MeSH
- proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Stereolithography-assisted fabrication of hydrogels of carboxybetaine methacrylamide (CBMAA) and a α,ω-methacrylate poly(d,l-lactide-block-ethylene glycol-block- d,l-lactide) (MA-PDLLA-PEG-PDLLA-MA) telechelic triblock macromer is presented. This technique allows printing complex structures with gyroid interconnected porosity possessing extremely high specific area. Hydrogels are characterized by infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and laser scanning confocal microscopy (LSCM). The copolymerization with zwitterionic comonomer leads hydrogels with high equilibrium water content (EWC), up to 700% while maintaining mechanical robustness. The introduction of carboxybetaine yields excellent resistance to nonspecific protein adsorption while providing a facile way for specific biofunctionalization with a model protein, fluorescein isothiocyanate labeled bovine serum albumin (BSA). The homogeneous protein immobilization across the hydrogel pores prove the accessibility to the innermost pore volumes. The remarkably low protein adsorption combined with the interconnected nature of the porosity allowing fast diffusion of nutrient and waste product and the mimicry of bone trabecular, makes the hydrogels presented here highly attractive for tissue engineering.
- MeSH
- hydrogely chemie MeSH
- methakryláty chemie MeSH
- poréznost MeSH
- skot MeSH
- tkáňové inženýrství * MeSH
- tkáňové podpůrné struktury chemie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this work, two antifouling polymer brushes were tested at different shear stress conditions to evaluate their performance in reducing the initial adhesion of Escherichia coli. Assays were performed using a parallel plate flow chamber and a shear stress range between 0.005 and 0.056 Pa. These shear stress values are found in different locations in the human body where biomedical devices are placed. The poly(MeOEGMA) and poly(HPMA) brushes were characterized and it was shown that they can reduce initial adhesion up to 90% when compared to glass. Importantly, the performance of these surfaces was not affected by the shear stress, which is an indication that they do not collapse under this shear stress range. The brushes displayed a similar behavior despite the differences in their chemical composition and surface energy. Both surfaces have shown ultra-low adsorption of macromolecules from the medium when tested with relevant biological fluids (urine and serum). This indicates that these surfaces can potentially be used in biomedical devices to reduce initial bacterial colonization and eventually reduce biofilm formation on these devices.
- MeSH
- bakteriální adheze fyziologie MeSH
- biofilmy růst a vývoj MeSH
- Escherichia coli MeSH
- lidé MeSH
- mechanický stres MeSH
- pevnost ve smyku fyziologie MeSH
- polymery chemie MeSH
- povrchové vlastnosti MeSH
- tělesné tekutiny mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nonthrombogenic modifications of membranes for extracorporeal membrane oxygenators (ECMOs) are of key interest. The absence of hemocompatibility of these membranes and the need of anticoagulation of patients result in severe and potentially life-threatening complications during ECMO treatment. To address the lack of hemocompatibility of the membrane, surface modifications are developed, which act as barriers to protein adsorption on the membrane and, in this way, prevent activation of the coagulation cascade. The modifications are based on nonionic and zwitterionic polymer brushes grafted directly from poly(4-methyl-1-pentene) (TPX) membranes via single electron transfer-living radical polymerization. Notably, this work introduces the first example of well-controlled surface-initiated radical polymerization of zwitterionic brushes. The antifouling layers markedly increase the recalcification time (a proxy of initiation of coagulation) compared to bare TPX membranes. Furthermore, platelet and leukocyte adhesion is drastically decreased, rendering the ECMO membranes hemocompatible.
Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.
- MeSH
- aktivace trombocytů účinky léků MeSH
- biokompatibilní potahované materiály chemie farmakologie MeSH
- biosenzitivní techniky metody MeSH
- buněčná adheze účinky léků MeSH
- chitosan chemie MeSH
- hydrogely chemie farmakologie MeSH
- implantabilní infuzní pumpy MeSH
- leukocyty cytologie účinky léků MeSH
- lidé MeSH
- methakryláty chemie MeSH
- polyethylenglykoly chemie MeSH
- polymerizace MeSH
- primární buněčná kultura MeSH
- trombocyty účinky léků MeSH
- volné radikály MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Poly(ϵ-caprolactone) (PCL) nanofibers are very attractive materials for tissue engineering (TE) due to their degradability and structural similarity to the extracellular matrix (ECM). However, upon exposure to biological media, their surface is rapidly fouled by proteins and cells, which may lead to inflammation and foreign body reaction. In this study, an approach for the modification of PCL nanofibers to prevent protein fouling from biological fluids and subsequent cell adhesion is introduced. A biomimetic polydopamine (PDA) layer was deposited on the surface of the PCL nanofibers and four types of antifouling polymer brushes were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) from initiator moieties covalently attached to the PDA layer. Cell adhesion was assessed with mouse embryonic fibroblasts (MEFs). MEFs rapidly adhered and formed cell-matrix adhesions (CMAs) with PCL and PCL-PDA nanofibers. Importantly, the nanofibers modified with antifouling polymer brushes were able to suppress non-specific protein adsorption and thereby cell adhesion.
- MeSH
- bioznečištění prevence a kontrola MeSH
- buněčná adheze MeSH
- kultivované buňky MeSH
- myši MeSH
- nanovlákna chemie MeSH
- polyestery * MeSH
- testování materiálů MeSH
- tkáňové inženýrství MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A plasmonic biosensor for rapid detection of protein biomarkers in complex media is reported. Clinical serum samples were analyzed by using a novel biointerface architecture based on poly[(N-(2-hydroxypropyl) methacrylamide)-co-(carboxybetaine methacrylamide)] brushes functionalized with bioreceptors. This biointerface provided an excellent resistance to fouling even after the functionalization and allowed for the first time the direct detection of antibodies against hepatitis B surface antigen (anti-HBs) in clinical serum samples using surface plasmon resonance (SPR). The fabricated SPR biosensor allowed discrimination of anti-HBs positive and negative clinical samples in 10min. Results are validated by enzyme-linked immunoassays of the sera in a certified laboratory. The sensor could be regenerated by simple treatment with glycine buffer.
- MeSH
- akrylamidy chemie MeSH
- design vybavení MeSH
- hepatitida B - antigeny povrchové imunologie MeSH
- hepatitida B krev imunologie MeSH
- lidé MeSH
- limita detekce MeSH
- povrchová plasmonová rezonance přístrojové vybavení MeSH
- povrchové vlastnosti MeSH
- protilátky virové krev imunologie MeSH
- virus hepatitidy B imunologie izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
The contact of blood with artificial materials generally leads to immediate protein adsorption (fouling), which mediates subsequent biological processes such as platelet adhesion and activation leading to thrombosis. Recent progress in the preparation of surfaces able to prevent protein fouling offers a potential avenue to mitigate this undesirable effect. In the present contribution, we have prepared several types of state-of-the-art antifouling polymer brushes on polycarbonate plastic substrate, and investigated their ability to prevent platelet adhesion and thrombus formation under dynamic flow conditions using human blood. Moreover, we compared the ability of such brushes--grafted on quartz via an adlayer analogous to that used on polycarbonate--to prevent protein adsorption from human blood plasma, assessed for the first time by means of an ultrahigh frequency acoustic wave sensor. Results show that the prevention of such a phenomenon constitutes one promising route toward enhanced resistance to thrombus formation, and suggest that antifouling polymer brushes could be of service in biomedical applications requiring extensive blood-material surface contact.
- MeSH
- adhezivita trombocytů účinky léků MeSH
- křemen chemie MeSH
- lidé MeSH
- polykarboxylátový cement chemie farmakologie MeSH
- povrchové vlastnosti * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH