INTRODUCTION: Serological tests can be used to test whether an animal has been exposed to an infectious agent, and whether its immune system has recognized and produced antibodies against it. Paired samples taken several weeks apart then document an ongoing infection and/or seroconversion. METHODS: In the absence of a commercial kit, we developed an indirect enzyme-linked immunosorbent assay (ELISA) to detect the fungus-specific antibodies for Pseudogymnoascus destructans, the agent of white-nose syndrome in bats. RESULTS AND DISCUSSION: Samples collected from European Myotis myotis (n=35) and Asian Myotis dasycneme (n=11) in their hibernacula at the end of the hibernation period displayed 100% seroprevalence of antibodies against P. destructans, demonstrating a high rate of exposure. Our results showed that the higher the titre of antibodies against P. destructans, the lower the infection intensity, suggesting that a degree of protection is provided by this arm of adaptive immunity in Palearctic bats. Moreover, P. destructans infection appears to be a seasonally self-limiting disease of Palearctic bats showing seroconversion as the WNS skin lesions heal in the early post-hibernation period.
- MeSH
- Chiroptera * MeSH
- kožní nemoci * MeSH
- mykózy * epidemiologie veterinární MeSH
- séroepidemiologické studie MeSH
- syndrom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats host and can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. RESULTS: We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures, 37 °C and 5 °C, to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or down-regulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. CONCLUSIONS: The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses.
- MeSH
- Chiroptera * fyziologie MeSH
- hibernace * MeSH
- Lyssavirus * MeSH
- transkriptom MeSH
- viry * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
MicroRNA jsou krátké (18-24 nukleotidů) nekódující, velmi stabilní molekuly RNA, jejichž funkce zahrnuje vše od regulace klíčových signálních drah na molekulární úrovni až po rychlou buněčnou odpověď organismu na patologické stavy. microRNA jsou stabilní v tělních tekutinách a představují velmi perspektivní diagnostický cíl pro včasnou identifikaci široké škály onemocnění. V tomto souhrnném článku je uveden přehled kandidátních diagnostických miRNA vhodných pro využití v diagnostice onkologické kardiotoxicity.
MicroRNAs are very stable short (18-24) noncoding RNAs. The function of miRNA molecules includes everything from the regulation of key signalling pathways at the molecular level to the rapid cellular response to pathological conditions. miRNAs are stable in body fluids and represent a very promising diagnostic targets for the early identification of a wide range of diseases. This summary article provides an overview of candidate diagnostic miRNAs suitable for use in the diagnosis of oncological cardiotoxicity.
Bats are natural reservoirs of numerous coronaviruses, including the potential ancestor of SARS-CoV-2. Knowledge concerning the interaction between coronaviruses and bat cells is sparse. We investigated the ability of primary cells from Rhinolophus and Myotis species, as well as of established and novel cell lines from Myotis myotis, Eptesicus serotinus, Tadarida brasiliensis, and Nyctalus noctula, to support SARS-CoV-2 replication. None of these cells were permissive to infection, not even the ones expressing detectable levels of angiotensin-converting enzyme 2 (ACE2), which serves as the viral receptor in many mammalian species. The resistance to infection was overcome by expression of human ACE2 (hACE2) in three cell lines, suggesting that the restriction to viral replication was due to a low expression of bat ACE2 (bACE2) or the absence of bACE2 binding in these cells. Infectious virions were produced but not released from hACE2-transduced M. myotis brain cells. E. serotinus brain cells and M. myotis nasal epithelial cells expressing hACE2 efficiently controlled viral replication, which correlated with a potent interferon response. Our data highlight the existence of species-specific and cell-specific molecular barriers to viral replication in bat cells. These novel chiropteran cellular models are valuable tools to investigate the evolutionary relationships between bats and coronaviruses. IMPORTANCE Bats are host ancestors of several viruses that cause serious disease in humans, as illustrated by the ongoing SARS-CoV-2 pandemic. Progress in investigating bat-virus interactions has been hampered by a limited number of available bat cellular models. We have generated primary cells and cell lines from several bat species that are relevant for coronavirus research. The various permissivities of the cells to SARS-CoV-2 infection offered the opportunity to uncover some species-specific molecular restrictions to viral replication. All bat cells exhibited a potent entry-dependent restriction. Once this block was overcome by overexpression of human ACE2, which serves at the viral receptor, two bat cell lines controlled well viral replication, which correlated with the inability of the virus to counteract antiviral responses. Other cells potently inhibited viral release. Our novel bat cellular models contribute to a better understanding of the molecular interplays between bat cells and viruses.
- MeSH
- angiotensin-konvertující enzym 2 genetika MeSH
- Chiroptera * virologie MeSH
- druhová specificita MeSH
- glykoprotein S, koronavirus metabolismus MeSH
- lidé MeSH
- replikace viru * MeSH
- SARS-CoV-2 * fyziologie MeSH
- virové receptory metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Leptospirosis is a bacterial zoonotic infection of worldwide occurrence. Bats, like other mammalian reservoirs, may be long-term carriers that maintain endemicity of infection and shed viable leptospires in urine. Direct and/or indirect contact with these Leptospira shedders is the main risk factor as regards public health concern. However, knowledge about bat leptospirosis in the Palearctic Region, and in Europe in particular, is poor. We collected urine from 176 specimens of 11 bat species in the Czech Republic, Poland, Republic of Armenia and the Altai Region of Russia between 2014 and 2019. We extracted DNA from the urine samples to detect Leptospira spp. shedders using PCR amplification of the 16S rRNA and LipL32 genes. Four bat species (Barbastella barbastellus n = 1, Myotis bechsteinii n = 1, Myotis myotis n = 24 and Myotis nattereri n = 1) tested positive for Leptospira spp., with detected amplicons showing 100% genetic identity with pathogenic Leptospira interrogans. The site- and species-specific prevalence range was 0%-24.1% and 0%-20%, respectively. All bats sampled in the Republic of Armenia and Russia were negative. Given the circulation of pathogenic leptospires in strictly protected Palearctic bat species and their populations, non-invasive and non-lethal sampling of urine for molecular Leptospira spp. detection is recommended as a suitable surveillance and monitoring strategy. Moreover, our results should raise awareness of this potential disease risk among health professionals, veterinarians, chiropterologists and wildlife rescue workers handling bats, as well as speleologists and persons cleaning premises following bat infestation.
- MeSH
- Chiroptera * MeSH
- Leptospira * genetika MeSH
- leptospiróza * epidemiologie veterinární MeSH
- polymerázová řetězová reakce veterinární MeSH
- RNA ribozomální 16S genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Diclofenac is a drug commonly used in human and veterinary medicine for the treatment of diseases associated with inflammation and pain. Medicinal products enter waste and surface waters on an everyday basis and contaminate the aquatic environment. Fish are therefore permanently exposed to these chemicals dissolved in their aquatic environment. To simulate variable environmental conditions, the aim of our study was to examine adverse effects of diclofenac under different temperatures of cell incubation (18, 21, 24, 27 and 30 °C). Cyto-toxic and -static effects of diclofenac in concentrations of 0.001 mcg/ml, 0.01 microg/ml, 0.1 mcg/ml, 1 mcg/ml, 10 mcg/ml and 100 mcg/ml for the carp (Cyprinuscarpio) cultured leukocytes were quantified using detection of lactate dehydrogenase released from damaged cells. Overall DCF cytotoxicity was relatively low and its impact was pronounced at higher temperature and DCF concentration. Cells growth inhibition is changing more rapidly but it is high mainly at the highest concentration from low temperature. DNA fragmentation was not detected in tested leukocyte cell line. CYP450 increased diclofenac cytotoxicity only at the highest concentration but at incubation temperatures 18 and 27 °C. Leukocyte viability is essential for immune functions and any change can lead to reduction of resistance against pathogens, mainly in cold year seasons, when the immune system is naturally suppressed.
- MeSH
- antiflogistika nesteroidní toxicita MeSH
- diklofenak toxicita MeSH
- kapři imunologie metabolismus MeSH
- kultivované buňky MeSH
- leukocyty účinky léků imunologie metabolismus patologie MeSH
- proliferace buněk účinky léků MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The population of brown trout (Salmo trutta fario) in continental Europe is on the decline, with infectious diseases confirmed as one of the causative factors. However, no data on the epizootiological situation of wild fish in the Czech Republic are currently available. In this study, brown trout (n = 260) from eight rivers were examined for the presence of viral and parasitical pathogens. Salmonid alphavirus-2, infectious pancreatic necrosis virus, piscine novirhabdovirus (VHSV) and salmonid novirhabdovirus (IHNV) were not detected using PCR. Cell culturing showed no viruses as well, and serological analysis of 110 sera did not detect any specific antibodies against VHSV or IHNV. Fish from two rivers were positive for the presence of piscine orthoreovirus-3 (PRV-3), subtype PRV-3b. However, none of the PRV-3-positive fish showed gross pathologies typically associated with PRV infections. By far the most widespread pathogen was Tetracapsuloides bryosalmonae which was confirmed in each of the examined locations, with a prevalence of up to 65% and 100%, as established by immunohistochemistry and PCR, respectively. Furthermore, up to 43.8% of fish showed signs of proliferative kidney disease caused by T. bryosalmonae, suggesting that this parasite is a main health challenge for brown trout in the Czech Republic.
- Publikační typ
- časopisecké články MeSH
Specimens archived in wet collections represent valuable material for scientific research. Here, we show that bat fly (Diptera, Nycteribiidae) samples contain DNA of Pseudogymnoascus destructans, a fungus pathogenic to bats. Using dual-probe quantitative PCR, we detected P. destructans DNA on bat flies collected in the Samara, Sverdlovsk and Irkutsk regions of Russia between 2005 and 2017. Fungal load was significantly lower on bat flies from wet collections than on freshly collected mites in the Czech Republic. The bat pathogen was present in the Samara region (European part of Russia) in 2005, that is, a year before recognition of white-nose syndrome in North America. As Samara and Irkutsk regions were identified as new positive locations of P. destructans, our data expand the known geographic distribution of P. destructans. We conclude that ethanol-stored ectoparasites can be used to identify the presence of pathogens in historic bat populations and understudied geographical regions.
- MeSH
- Ascomycota genetika izolace a purifikace patogenita MeSH
- Chiroptera parazitologie MeSH
- členovci - vektory mikrobiologie MeSH
- Diptera mikrobiologie MeSH
- DNA fungální genetika MeSH
- infestace ektoparazity epidemiologie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- mykózy epidemiologie MeSH
- parazitární zátěž MeSH
- uchovávání tkání MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Rusko epidemiologie MeSH
BACKGROUND: Spatiotemporal distribution patterns are important infectious disease epidemiological characteristics that improve our understanding of wild animal population health. The skin infection caused by the fungus Pseudogymnoascus destructans emerged as a panzootic disease in bats of the northern hemisphere. However, the infection status of bats over an extensive geographic area of the Russian Federation has remained understudied. RESULTS: We examined bats at the geographic limits of bat hibernation in the Palearctic temperate zone and found bats with white-nose syndrome (WNS) on the European slopes of the Ural Mountains through the Western Siberian Plain, Central Siberia and on to the Far East. We identified the diagnostic symptoms of WNS based on histopathology in the Northern Ural region at 11° (about 1200 km) higher latitude than the current northern limit in the Nearctic. While body surface temperature differed between regions, bats at all study sites hibernated in very cold conditions averaging 3.6 °C. Each region also differed in P. destructans fungal load and the number of UV fluorescent skin lesions indicating skin damage intensity. Myotis bombinus, M. gracilis and Murina hilgendorfi were newly confirmed with histopathological symptoms of WNS. Prevalence of UV-documented WNS ranged between 16 and 76% in species of relevant sample size. CONCLUSIONS: To conclude, the bat pathogen P. destructans is widely present in Russian hibernacula but infection remains at low intensity, despite the high exposure rate.
- MeSH
- Ascomycota * MeSH
- Chiroptera * klasifikace genetika MeSH
- dermatomykózy epidemiologie veterinární MeSH
- divoká zvířata MeSH
- druhová specificita MeSH
- hibernace MeSH
- molekulární typizace MeSH
- nos * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Rusko epidemiologie MeSH