Detailed knowledge of human B-cell development is crucial for the proper interpretation of inborn errors of immunity and malignant diseases. It is of interest to understand the kinetics of protein expression changes during development, but also to properly interpret the major and possibly alternative developmental trajectories. We have investigated human samples from healthy individuals with the aim of describing all B-cell developmental trajectories. We validated a 30-parameter mass cytometry panel and demonstrated the utility of "vaevictis" visualization of B-cell developmental stages. We used the trajectory inference tool "tviblindi" to exhaustively describe all trajectories leading to all developmental ends discovered in the data. Focusing on Natural Effector B cells, we demonstrated the dynamics of expression of nuclear factors (PAX-5, TdT, Ki-67, Bcl-2), cytokine and chemokine receptors (CD127, CXCR4, CXCR5) in relation to the canonical B-cell developmental stage markers. We observed branching of the memory development, where follicular memory formation was marked by CD73 expression. Lastly, we performed an analysis of two example cases of abnormal B-cell development caused by mutations in RAG-1 and Wiskott-Aldrich syndrome gene in patients with primary immunodeficiency. In conclusion, we developed, validated, and presented a comprehensive set of tools for the investigation of B-cell development in the bone marrow compartment.
- MeSH
- algoritmy * MeSH
- B-lymfocyty * imunologie MeSH
- buněčná diferenciace * imunologie genetika MeSH
- homeodoménové proteiny * genetika metabolismus MeSH
- lidé MeSH
- mutace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Defective FAS (CD95/Apo-1/TNFRSF6) signaling causes autoimmune lymphoproliferative syndrome (ALPS). Hypergammaglobulinemia is a common feature in ALPS with FAS mutations (ALPS-FAS), but paradoxically, fewer conventional memory cells differentiate from FAS-expressing germinal center (GC) B cells. Resistance to FAS-induced apoptosis does not explain this phenotype. We tested the hypothesis that defective non-apoptotic FAS signaling may contribute to impaired B cell differentiation in ALPS. We analyzed secondary lymphoid organs of patients with ALPS-FAS and found low numbers of memory B cells, fewer GC B cells, and an expanded extrafollicular (EF) B cell response. Enhanced mTOR activity has been shown to favor EF versus GC fate decision, and we found enhanced PI3K/mTOR and BCR signaling in ALPS-FAS splenic B cells. Modeling initial T-dependent B cell activation with CD40L in vitro, we showed that FAS competent cells with transient FAS ligation showed specifically decreased mTOR axis activation without apoptosis. Mechanistically, transient FAS engagement with involvement of caspase-8 induced nuclear exclusion of PTEN, leading to mTOR inhibition. In addition, FASL-dependent PTEN nuclear exclusion and mTOR modulation were defective in patients with ALPS-FAS. In the early phase of activation, FAS stimulation promoted expression of genes related to GC initiation at the expense of processes related to the EF response. Hence, our data suggest that non-apoptotic FAS signaling acts as molecular switch between EF versus GC fate decisions via regulation of the mTOR axis and transcription. The defect of this modulatory circuit may explain the observed hypergammaglobulinemia and low memory B cell numbers in ALPS.
Triple-negative breast cancer (TNBC) is an aggressive and complex subtype of breast cancer that lacks targeted therapy. TNBC manifests characteristic, extensive intratumoral heterogeneity that promotes disease progression and influences drug response. Single-cell techniques in combination with next-generation computation provide an unprecedented opportunity to identify molecular events with therapeutic potential. Here, we describe the generation of a comprehensive mass cytometry panel for multiparametric detection of 23 phenotypic markers and 13 signaling molecules. This single-cell proteomic approach allowed us to explore the landscape of TNBC heterogeneity, with particular emphasis on the tumor microenvironment. We prospectively profiled freshly resected tumors from 26 TNBC patients. These tumors contained phenotypically distinct subpopulations of cancer and stromal cells that were associated with the patient's clinical status at the time of surgery. We further classified the epithelial-mesenchymal plasticity of tumor cells, and molecularly defined phenotypically diverse populations of tumor-associated stroma. Furthermore, in a retrospective tissue-microarray TNBC cohort, we showed that the level of CD97 at the time of surgery has prognostic potential.
Recently, we defined "CML-like" subtype of BCR::ABL1-positive acute lymphoblastic leukemia (ALL), resembling lymphoid blast crisis of chronic myeloid leukemia (CML). Here we retrospectively analyzed prognostic relevance of minimal residual disease (MRD) and other features in 147 children with BCR::ABL1-positive ALL (diagnosed I/2000-IV/2021, treated according to EsPhALL (n = 133) or other (n = 14) protocols), using DNA-based monitoring of BCR::ABL1 genomic breakpoint and clonal immunoglobulin/T-cell receptor gene rearrangements. Although overall prognosis of CML-like (n = 48) and typical ALL (n = 99) was similar (5-year-EFS 60% and 49%, respectively; 5-year-OS 75% and 73%, respectively), typical ALL presented more relapses while CML-like patients more often died in the first remission. Prognostic role of MRD was significant in the typical ALL (p = 0.0005 in multivariate analysis for EFS). In contrast, in CML-like patients MRD was not significant (p values > 0.2) and inapplicable for therapy adjustment. Moreover, in the typical ALL, risk-prediction could be further improved by considering initial hyperleukocytosis. Early distinguishing typical BCR::ABL1-positive ALL and CML-like patients is essential to enable optimal treatment approach in upcoming protocols. For the typical ALL, tyrosine-kinase inhibitors and concurrent chemotherapy with risk-directed intensity should be recommended; in the CML-like disease, no relevant prognostic feature applicable for therapy tailoring was found so far.
- MeSH
- akutní lymfatická leukemie * genetika farmakoterapie MeSH
- akutní nemoc MeSH
- bcr-abl fúzní proteiny genetika MeSH
- chronická myeloidní leukemie * farmakoterapie genetika MeSH
- dítě MeSH
- lidé MeSH
- retrospektivní studie MeSH
- reziduální nádor genetika MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Testicular germ cell tumors (TGCT) are unique malignancies of young adult men; their biology is, however, underexplored and there has not been much progress in their treatment for decades. Circulating free tumor DNA (cfDNA) analysis represents a promising way of discovering novel diagnostic and treatment options. OBJECTIVE: The study evaluates the clinical value of cfDNA detection in TGCT patients. DESIGN AND METHODS: Total cfDNA concentration and ratio of its 2 main fragments (180 and 360 bp) were evaluated by spectrophotometry, capillary electrophoresis and qPCR in peripheral blood plasma of 96 TGCT patients (173 samples) and 31 normal controls. Non-parametric tests were used for statistical analyses. RESULTS: The total cfDNA concentration was significantly higher in TGCT than in controls (P < 0.0001), with the highest levels at disease progression, but with no clear threshold between malignant and normal samples. Patients with positive tumor markers had higher cfDNA concentrations than those with negative markers (P = 0.01). Longer 360 bp cfDNA fragments were found in 58% of TGCT patients including almost all samples from relapse or disease progression but no normal controls (P < 0.0001). CONCLUSION: Total cfDNA levels are significantly increased in TGCT patients but without a clear threshold separating normal and tumor samples, thus total cfDNA amount itself is not a sensitive enough marker to identify or monitor TGCT. Longer cfDNA fragments have been found exclusively in a proportion of tumors and predominantly at disease progression, representing a novel potential marker for TGCT monitoring that would deserve further exploration.
- MeSH
- cirkulující nádorová DNA * MeSH
- germinální a embryonální nádory * MeSH
- lidé MeSH
- mladý dospělý MeSH
- nádorové biomarkery MeSH
- progrese nemoci MeSH
- testikulární nádory * MeSH
- volné cirkulující nukleové kyseliny * MeSH
- Check Tag
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Fusion of the ZNF384 gene as the 3' partner to several different 5' partner genes occurs recurrently in B-cell precursor acute lymphoblastic and mixed phenotype B/myeloid leukemia. These canonical fusions (ZNF384r) contain the complete ZNF384 coding sequence and are associated with a specific gene expression signature. Cases with this signature, but without canonical ZNF384 fusions (ZNF384r-like cases), have been described previously. Although some have been shown to harbor ZNF362 fusions, the primary aberrations remain unknown in a major proportion. We studied 3 patients with the ZNF384r signature and unknown primary genetic background and identified a previously unknown class of genetic aberration affecting the last exon of ZNF384 and resulting in disruption of the C-terminal portion of the ZNF384 protein. Importantly, in 2 cases, the ZNF384 aberration, indel, was missed during the bioinformatic analysis but revealed by the manual, targeted reanalysis. Two cases with the novel aberrations had a mixed (B/myeloid) immunophenotype commonly associated with canonical ZNF384 fusions. In conclusion, we present leukemia cases with a novel class of ZNF384 aberrations that phenocopy leukemia with ZNF384r. Therefore, we show that part of the so-called ZNF384r-like cases represent the same genetic subtype as leukemia with canonical ZNF384 fusions.
- MeSH
- akutní myeloidní leukemie * genetika MeSH
- imunofenotypizace MeSH
- lidé MeSH
- trans-aktivátory * genetika MeSH
- transkripční faktory MeSH
- transkriptom MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recently, we described B-cell precursor acute lymphoblastic leukemia (BCP-ALL) subtype with early switch to the monocytic lineage and loss of the B-cell immunophenotype, including CD19 expression. Thus far, the genetic background has remained unknown. Among 726 children consecutively diagnosed with BCP-ALL, 8% patients experienced switch detectable by flow cytometry (FC). Using exome and RNA sequencing, switch was found to positively correlate with three different genetic subtypes: PAX5-P80R mutation (5 cases with switch out of 5), rearranged DUX4 (DUX4r; 30 cases of 41) and rearranged ZNF384 (ZNF384r; 4 cases of 10). Expression profiles or phenotypic patterns correlated with genotypes, but within each genotype they could not identify cases who subsequently switched. If switching was not taken into account, the B-cell-oriented FC assessment underestimated the minimal residual disease level. For patients with PAX5-P80R, a discordance between FC-determined and PCR-determined MRD was found on day 15, resulting from a rapid loss of the B-cell phenotype. Discordance on day 33 was observed in all the DUX4r, PAX5-P80R and ZNF384r subtypes. Importantly, despite the substantial phenotypic changes, possibly even challenging the appropriateness of BCP-ALL therapy, the monocytic switch was not associated with a higher incidence of relapse and poorer prognosis in patients undergoing standard ALL treatment.
- MeSH
- aktivátorový protein specifický pro B-buňky genetika MeSH
- akutní lymfatická leukemie * MeSH
- B-lymfocyty MeSH
- imunofenotypizace MeSH
- lidé MeSH
- mutace MeSH
- pre-B-buněčná leukemie * diagnóza genetika MeSH
- reziduální nádor MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- buněčné klony MeSH
- buňky K562 MeSH
- CRISPR-Cas systémy MeSH
- genový knockout MeSH
- homozygot MeSH
- hyperhomocysteinemie farmakoterapie genetika MeSH
- kultivované buňky MeSH
- kyselina listová terapeutické užití MeSH
- lidé MeSH
- megaloblastová anemie farmakoterapie genetika MeSH
- mladiství MeSH
- posunová mutace MeSH
- recidiva MeSH
- sekvenční delece MeSH
- sekvenování exomu MeSH
- sodíko-vodíkový výměnný transportér 1 nedostatek genetika MeSH
- vitamin B 12 terapeutické užití MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- Publikační typ
- dopisy MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
The emergence of cisplatin (CDDP) resistance is the main cause of treatment failure and death in patients with testicular germ cell tumors (TGCT), but its biologic background is poorly understood. To study the molecular basis of CDDP resistance in TGCT we prepared and sequenced CDDP-exposed TGCT cell lines as well as 31 primary patients' samples. Long-term exposure to CDDP increased the CDDP resistance 10 times in the NCCIT cell line, while no major resistance was achieved in Tera-2. Development of CDDP resistance was accompanied by changes in the cell cycle (increase in G1 and decrease in S-fraction), increased number of acquired mutations, of which 3 were present within ATRX gene, as well as changes in gene expression pattern. Copy number variation analysis showed, apart from obligatory gain of 12p, several other large-scale gains (chr 1, 17, 20, 21) and losses (chr X), with additional more CNVs found in CDDP-resistant cells (e.g., further losses on chr 1, 4, 18, and gain on chr 8). In the patients' samples, those who developed CDDP resistance and died of TGCT (2/31) showed high numbers of acquired aberrations, both SNPs and CNVs, and harbored mutations in genes potentially relevant to TGCT development (e.g., TRERF1, TFAP2C in one patient, MAP2K1 and NSD1 in another one). Among all primary tumor samples, the most commonly mutated gene was NSD1, affected in 9/31 patients. This gene encoding histone methyl transferase was also downregulated and identified among the 50 most differentially expressed genes in CDDP-resistant NCCIT cell line. Interestingly, 2/31 TGCT patients harbored mutations in the ATRX gene encoding a chromatin modifier that has been shown to have a critical function in sexual differentiation. Our research newly highlights its probable involvement also in testicular tumors. Both findings support the emerging role of altered epigenetic gene regulation in TGCT and CDDP resistance development.
- Publikační typ
- časopisecké články MeSH