Identification of filamentous fungi based on morphological features is the most available approach used in clinical mycology laboratories. However, MALDI-TOF mass spectrometry is currently invaluable for identification of microorganisms because of its rapidity, simplicity, and accuracy. This study aimed to find the optimal way of identifying filamentous fungi using MALDI-TOF MS.The sample comprised 193 isolates of filamentous fungi. The identification started with morphological assessment. Then isolates were identified using MALDI-TOF MS, both directly from culture and following culture in liquid media with extraction. Subsequently, identification of 20 selected isolates was compared by sequencing of the benA gene, ITS1-5,8-ITS2, and D1-D2 LSU regions.Based on morphological criteria, 17 genera of fungi were identified. With MALDI-TOF MS performed directly from culture, nine isolates were identified to the genus level and 184 to the species level, with a total of 75 species being noted. With the MALDI-TOF MS extraction method, 190 isolates were identified to the species level, with 43 species being noted. The rates of agreement between identification using morphology and the MALDI-TOF MS direct method were 58.55% at the genus level and 22.24% at the species level. The rates of agreement between identification using morphology and the MALDI-TOF MS extraction method were 84.97% at the genus level and 46.11% at the species level. Using sequencing, 87.5% agreement was found for identification with the MALDI-TOF MS extraction method, as compared with only 43.75% for the direct method.The results suggest that the optimal approach to identification of filamentous fungi is a combination of morphological features and MALDI-TOF MS using the extraction method.
Cephalochordates (amphioxi or lancelets) are representatives of the most basally divergent group of the chordate phylum. Studies of amphioxus development and anatomy hence provide a key insight into vertebrate evolution. More widespread use of amphioxus in the evo-devo field would be greatly facilitated by expanding the methodological toolbox available in this model system. For example, evo-devo research on amphioxus requires deep understanding of animal anatomy. Although conventional confocal microscopy can visualize transparent amphioxus embryos and early larvae, the imaging of later developmental stages is problematic because of the size and opaqueness of the animal. Here, we show that light sheet microscopy combined with tissue clearing methods enables exploration of large amphioxus specimens while keeping the surface and the internal structures intact. We took advantage of the phenomenon of autofluorescence of amphioxus larva to highlight anatomical details. In order to investigate molecular markers at the single-cell level, we performed antibody-based immunodetection of melanopsin and acetylated-α-tubulin to label rhabdomeric photoreceptors and the neuronal scaffold. Our approach that combines light sheet microscopy with the clearing protocol, autofluorescence properties of amphioxus, and antibody immunodetection allows visualizing anatomical structures and even individual cells in the 3D space of the entire animal body.
- Publication type
- Journal Article MeSH
Dexrazoxane (DEX) is a clinically available cardioprotectant that reduces the toxicity induced by anthracycline (ANT) anticancer drugs; however, DEX is seldom used and its action is poorly understood. Inorganic nitrate/nitrite has shown promising results in myocardial ischemia-reperfusion injury and recently in acute high-dose ANT cardiotoxicity. However, the utility of this approach for overcoming clinically more relevant chronic forms of cardiotoxicity remains elusive. Hence, in this study, the protective potential of inorganic nitrate and nitrite against chronic ANT cardiotoxicity was investigated, and the results were compared to those using DEX. Chronic cardiotoxicity was induced in rabbits with daunorubicin (DAU). Sodium nitrate (1g/L) was administered daily in drinking water, while sodium nitrite (0.15 or 5mg/kg) or DEX (60mg/kg) was administered parenterally before each DAU dose. Although oral nitrate induced a marked increase in plasma NOx, it showed no improvement in DAU-induced mortality, myocardial damage or heart failure. Instead, the higher nitrite dose reduced the incidence of end-stage cardiotoxicity, prevented related premature deaths and significantly ameliorated several molecular and cellular perturbations induced by DAU, particularly those concerning mitochondria. The latter result was also confirmed in vitro. Nevertheless, inorganic nitrite failed to prevent DAU-induced cardiac dysfunction and molecular remodeling in vivo and failed to overcome the cytotoxicity of DAU to cardiomyocytes in vitro. In contrast, DEX completely prevented all of the investigated molecular, cellular and functional perturbations that were induced by DAU. Our data suggest that the difference in cardioprotective efficacy between DEX and inorganic nitrite may be related to their different abilities to address a recently proposed upstream target for ANT in the heart - topoisomerase IIβ.
- MeSH
- Daunorubicin adverse effects MeSH
- Dexrazoxane pharmacology MeSH
- DNA-Binding Proteins antagonists & inhibitors metabolism MeSH
- DNA Topoisomerases, Type II metabolism MeSH
- Nitrates pharmacology MeSH
- Sodium Nitrite pharmacology MeSH
- Infusions, Intravenous MeSH
- Myocytes, Cardiac metabolism pathology MeSH
- Cardiotonic Agents pharmacology MeSH
- Cardiotoxicity metabolism pathology prevention & control MeSH
- Rabbits MeSH
- Myocardium metabolism pathology MeSH
- Antibiotics, Antineoplastic adverse effects MeSH
- Drug Administration Schedule MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
Chronic anthracycline (ANT) cardiotoxicity is a serious complication of cancer chemotherapy. Molsidomine, a NO-releasing drug, has been found cardioprotective in different models of I/R injury and recently in acute high-dose ANT cardiotoxicity. Hence, we examined whether its cardioprotective effects are translatable to chronic ANT cardiotoxicity settings without induction of nitrosative stress and interference with antiproliferative action of ANTs. The effects of molsidomine (0.025 and 0.5mg/kg, i.v.) were studied on the well-established model of chronic ANT cardiotoxicity in rabbits (daunorubicin/DAU/3mg/kg/week for 10 weeks). Molsidomine was unable to significantly attenuate mortality, development of heart failure and morphological damage induced by DAU. Molsidomine did not alter DAU-induced myocardial lipoperoxidation, MnSOD down-regulation, up-regulation of HO-1, IL-6, and molecular markers of cardiac remodeling. Although molsidomine increased 3-nitrotyrosine in the myocardium, this event had no impact on cardiotoxicity development. Using H9c2 myoblasts and isolated cardiomyocytes, it was found that SIN-1 (an active metabolite of molsidomine) induces significant protection against ANT toxicity, but only at high concentrations. In leukemic HL-60 cells, SIN-1 initially augmented ANT cytotoxicity (in low and clinically achievable concentrations), but it protected these cells against ANT in the high concentrations. UHPLC-MS/MS investigation demonstrated that the loss of ANT cytotoxicity after co-incubation of the cells in vitro with high concentrations of SIN-1 is caused by unexpected chemical depletion of DAU molecule. The present study demonstrates that cardioprotective effects of molsidomine are not translatable to clinically relevant chronic form of ANT cardiotoxicity. The augmentation of antineoplastic effects of ANT in low (nM) concentrations may deserve further study.
- MeSH
- Anthracyclines toxicity MeSH
- Chronic Disease MeSH
- Daunorubicin toxicity MeSH
- Nitric Oxide Donors pharmacology MeSH
- Doxorubicin toxicity MeSH
- Cardiotonic Agents pharmacology MeSH
- Cardiotoxicity MeSH
- Rabbits MeSH
- Molsidomine pharmacology MeSH
- Cell Line, Tumor MeSH
- Heart Diseases chemically induced prevention & control MeSH
- Oxidative Stress drug effects MeSH
- Lipid Peroxidation drug effects MeSH
- Cell Proliferation drug effects MeSH
- Antibiotics, Antineoplastic toxicity MeSH
- Reactive Oxygen Species metabolism MeSH
- Ventricular Remodeling drug effects MeSH
- Heart Failure prevention & control MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Recent studies have demonstrated that several chelators possess marked potential as potent anti-neoplastic drugs and as agents that can ameliorate some of the adverse effects associated with standard chemotherapy. Anti-cancer treatment employs combinations of several drugs that have different mechanisms of action. However, data regarding the potential interactions between iron chelators and established chemotherapeutics are lacking. Using estrogen receptor-positive MCF-7 breast cancer cells, we explored the combined anti-proliferative potential of four iron chelators, namely: desferrioxamine (DFO), salicylaldehyde isonicotinoyl hydrazone (SIH), (E)-N'-[1-(2-hydroxy-5-nitrophenyl)ethyliden] isonicotinoyl hydrazone (NHAPI), and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), plus six selected anti-neoplastic drugs. These six agents are used for breast cancer treatment and include: paclitaxel, 5-fluorouracil, doxorubicin, methotrexate, tamoxifen and 4-hydroperoxycyclophosphamide (an active metabolite of cyclophosphamide). Our quantitative chelator-drug analyses were designed according to the Chou-Talalay method for drug combination assessment. All combinations of these agents yielded concentration-dependent, anti-proliferative effects. The hydrophilic siderophore, DFO, imposed antagonism when used in combination with all six anti-tumor agents and this antagonistic effect increased with increasing dose. Conversely, synergistic interactions were observed with combinations of the lipophilic chelators, NHAPI or Dp44mT, with doxorubicin and also the combinations of SIH, NHAPI or Dp44mT with tamoxifen. The combination of Dp44mT with anti-neoplastic agents was further enhanced following formation of its redox-active iron and especially copper complexes. The most potent combinations of Dp44mT and NHAPI with tamoxifen were confirmed as synergistic using another estrogen receptor-expressing breast cancer cell line, T47D, but not estrogen receptor-negative MDA-MB-231 cells. Furthermore, the synergy of NHAPI and tamoxifen was confirmed using MCF-7 cells by electrical impedance data, a mitochondrial inner membrane potential assay and cell cycle analyses. This is the first systematic investigation to quantitatively assess interactions between Fe chelators and standard chemotherapies using breast cancer cells. These studies are vital for their future clinical development.
- MeSH
- Aldehydes pharmacology MeSH
- Iron Chelating Agents pharmacology MeSH
- Cyclophosphamide analogs & derivatives MeSH
- Deferoxamine pharmacology MeSH
- Doxorubicin MeSH
- Fluorouracil MeSH
- Hydrazones pharmacology MeSH
- Humans MeSH
- Methotrexate MeSH
- MCF-7 Cells MeSH
- Paclitaxel MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents pharmacology MeSH
- Antineoplastic Combined Chemotherapy Protocols pharmacology MeSH
- Drug Synergism MeSH
- Tamoxifen MeSH
- Thiosemicarbazones pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Anthracyclines (such as doxorubicin or daunorubicin) are among the most effective anticancer drugs, but their usefulness is hampered by the risk of irreversible cardiotoxicity. Dexrazoxane (ICRF-187) is the only clinically approved cardioprotective agent against anthracycline cardiotoxicity. Its activity has traditionally been attributed to the iron-chelating effects of its metabolite with subsequent protection from oxidative stress. However, dexrazoxane is also a catalytic inhibitor of topoisomerase II (TOP2). Therefore, we examined whether dexrazoxane and two other TOP2 catalytic inhibitors, namely sobuzoxane (MST-16) and merbarone, protect cardiomyocytes from anthracycline toxicity and assessed their effects on anthracycline antineoplastic efficacy. Dexrazoxane and two other TOP2 inhibitors protected isolated neonatal rat cardiomyocytes against toxicity induced by both doxorubicin and daunorubicin. However, none of the TOP2 inhibitors significantly protected cardiomyocytes in a model of hydrogen peroxide-induced oxidative injury. In contrast, the catalytic inhibitors did not compromise the antiproliferative effects of the anthracyclines in the HL-60 leukemic cell line; instead, synergistic interactions were mostly observed. Additionally, anthracycline-induced caspase activation was differentially modulated by the TOP2 inhibitors in cardiac and cancer cells. Whereas dexrazoxane was upon hydrolysis able to significantly chelate intracellular labile iron ions, no such effect was noted for either sobuzoxane or merbarone. In conclusion, our data indicate that dexrazoxane may protect cardiomyocytes via its catalytic TOP2 inhibitory activity rather than iron-chelation activity. The differential expression and/or regulation of TOP2 isoforms in cardiac and cancer cells by catalytic inhibitors may be responsible for the selective modulation of anthracycline action observed.
- MeSH
- Anthracyclines pharmacology MeSH
- Biocatalysis drug effects MeSH
- Cell Cycle drug effects MeSH
- Daunorubicin pharmacology MeSH
- Dexrazoxane pharmacology MeSH
- DNA Topoisomerases, Type II metabolism MeSH
- Doxorubicin pharmacology MeSH
- Glutathione metabolism MeSH
- Glutathione Disulfide metabolism MeSH
- HL-60 Cells MeSH
- Topoisomerase II Inhibitors pharmacology MeSH
- Myocytes, Cardiac cytology drug effects metabolism MeSH
- Caspases metabolism MeSH
- Rats MeSH
- Cells, Cultured MeSH
- Drug Interactions MeSH
- Humans MeSH
- Animals, Newborn MeSH
- Piperazines pharmacology MeSH
- Rats, Wistar MeSH
- Cell Proliferation drug effects MeSH
- Flow Cytometry MeSH
- Thiobarbiturates pharmacology MeSH
- Cell Survival drug effects MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Dexrazoxane (DEX) is the only clinically used drug effective against anthracycline-induced cardiotoxicity and extravasation injury. However, the mechanism of its cardioprotective action still remains elusive. This paucity of comprehensive data is at least partially caused by the analytical difficulties associated with selective and sensitive simultaneous determination of the parent drug and its putative active metabolite ADR-925 in the relevant biological material. The aim of this study was to develop and validate the first LC-MS/MS method for simultaneous determination of DEX and ADR-925 in the isolated rat neonatal ventricular cardiomyocytes (NVCMs) and the cell culture medium. The analysis was performed on a Synergi Polar-RP column using the gradient profile of the mobile phase composed of 2mM ammonium formate and methanol. Electrospray ionization and ion trap mass analyzer were used as ionization and detection techniques, respectively. NVCMs were precipitated with methanol and the cell culture medium samples were diluted with the same solvent prior the LC-MS/MS analysis. The method was validated within the range of 4-80pmol/10(6) NVCMs and 7-70pmol/10(6) NVCMs for DEX and ADR-925, respectively, and at the concentrations of 8-100μM for both compounds in the culture cell medium. The practical applicability of this method was confirmed by the pilot analysis of NVCMs and the corresponding cell medium samples from relevant in vitro experiment. Hence, the LC-MS/MS method developed in this study represents a modern analytical tool suitable for investigation of DEX bioactivation inside the cardiomyocytes. In addition, the basic utility of the method for the analysis of DEX and ADR-925 in plasma samples was proved in a pilot experiment.
- MeSH
- Chromatography, Liquid methods MeSH
- Ethylenediamines pharmacokinetics MeSH
- Glycine analogs & derivatives pharmacokinetics MeSH
- Spectrometry, Mass, Electrospray Ionization methods MeSH
- Myocytes, Cardiac metabolism MeSH
- Cardiovascular Agents pharmacokinetics MeSH
- Rabbits MeSH
- Rats MeSH
- Cells, Cultured MeSH
- Animals, Newborn MeSH
- Pilot Projects MeSH
- Rats, Wistar MeSH
- Razoxane pharmacokinetics MeSH
- Sensitivity and Specificity MeSH
- Tandem Mass Spectrometry methods MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Validation Study MeSH