Functional connectivity analysis is a common approach to the characterization of brain function. While studies of functional connectivity have predominantly focused on resting-state fMRI, naturalistic paradigms, such as movie watching, are increasingly being used. This ecologically valid, yet relatively unconstrained acquisition state has been shown to improve subject compliance and, potentially, enhance individual differences. However, unlike the reliability of resting-state functional connectivity, the reliability of functional connectivity during naturalistic viewing has not yet been fully established. The current study investigates the intra-session reliability of functional connectivity during naturalistic viewing sessions to extend its understanding. Using fMRI data of 24 subjects measured at rest as well as during six naturalistic viewing conditions, we quantified the split-half reliability of each condition, as well as cross-condition reliabilities. We find that intra-session reliability is relatively high for all conditions. While cross-condition reliabilities are higher for pairings of two naturalistic viewing conditions, split-half reliability is highest for the resting state. Potential sources of variability across the conditions, as well as the strengths and limitations of using intra-session reliability as a measure in naturalistic viewing, are discussed.
Identifying regions important for spreading and mediating perturbations is crucial to assess the susceptibilities of spatio-temporal complex systems such as the Earth's climate to volcanic eruptions, extreme events or geoengineering. Here a data-driven approach is introduced based on a dimension reduction, causal reconstruction, and novel network measures based on causal effect theory that go beyond standard complex network tools by distinguishing direct from indirect pathways. Applied to a data set of atmospheric dynamics, the method identifies several strongly uplifting regions acting as major gateways of perturbations spreading in the atmosphere. Additionally, the method provides a stricter statistical approach to pathways of atmospheric teleconnections, yielding insights into the Pacific-Indian Ocean interaction relevant for monsoonal dynamics. Also for neuroscience or power grids, the novel causal interaction perspective provides a complementary approach to simulations or experiments for understanding the functioning of complex spatio-temporal systems with potential applications in increasing their resilience to shocks or extreme events.
Functional connectivity (FC) analysis is a prominent approach to analyzing fMRI data, especially acquired under the resting state condition. The commonly used linear correlation FC measure bears an implicit assumption of Gaussianity of the dependence structure. If only the marginals, but not all the bivariate distributions are Gaussian, linear correlation consistently underestimates the strength of the dependence. To assess the suitability of linear correlation and the general potential of nonlinear FC measures, we present a framework for testing and estimating the deviation from Gaussianity by means of comparing mutual information in the data and its Gaussianized counterpart. We apply this method to 24 sessions of human resting state fMRI. For each session, matrix of connectivities between 90 anatomical parcel time series is computed using mutual information and compared to results from its multivariate Gaussian surrogate that conserves the correlations but cancels any nonlinearity. While the group-level tests confirmed non-Gaussianity in the FC, the quantitative assessment revealed that the portion of mutual information neglected by linear correlation is relatively minor-on average only about 5% of the mutual information already captured by the linear correlation. The marginality of the non-Gaussianity was confirmed in comparisons using clustering of the parcels-the disagreement between clustering obtained from mutual information and linear correlation was attributable to random error. We conclude that for this type of data, practical relevance of nonlinear methods trying to improve over linear correlation might be limited by the fact that the data are indeed almost Gaussian.
- MeSH
- algoritmy MeSH
- dospělí MeSH
- Fourierova analýza MeSH
- kyslík krev MeSH
- lidé MeSH
- lineární modely MeSH
- magnetická rezonanční tomografie MeSH
- mladý dospělý MeSH
- nervové dráhy fyziologie MeSH
- normální rozdělení MeSH
- odpočinek fyziologie MeSH
- shluková analýza MeSH
- software MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Oscillatory phenomena in the brain activity and their synchronization are frequently studied using mathematical models and analytic tools derived from nonlinear dynamics. In many experimental situations, however, neural signals have a broadband character and if oscillatory activity is present, its dynamical origin is unknown. To cope with these problems, a framework for detecting nonlinear oscillatory activity in broadband time series is presented. First, a narrow-band oscillatory mode is extracted from a broadband background. Second, it is tested whether the extracted mode is significantly different from linearly filtered noise, modelled as a linear stochastic process possibly passed through a static nonlinear transformation. If a nonlinear oscillatory mode is positively detected, further analysis using nonlinear approaches such as the phase synchronization analysis can potentially bring new information. For linear processes, however, standard approaches such as the coherence analysis are more appropriate and provide sufficient description of underlying interactions with smaller computational effort. The method is illustrated in a numerical example and applied to analyze experimentally obtained human EEG time series from a sleeping subject.
- MeSH
- biologické hodiny fyziologie MeSH
- časové faktory MeSH
- elektroencefalografie metody MeSH
- lidé MeSH
- modely neurologické MeSH
- mozek fyziologie MeSH
- nelineární dynamika MeSH
- počítačové zpracování signálu MeSH
- spánek fyziologie MeSH
- spektrální analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH