Human chromosome inversions are types of balanced structural variations, making them difficult to analyze. Thanks to PEM (paired-end sequencing and mapping), there has been tremendous progress in studying inversions. Inversions play an important role as an evolutionary factor, contributing to the formation of gonosomes, speciation of chimpanzees and humans, and inv17q21.3 or inv8p23.1 exhibit the features of natural selection. Both inversions have been related to pathogenic phenotype by directly affecting a gene structure (e.g., inv5p15.1q14.1), regulating gene expression (e.g., inv7q21.3q35) and by predisposing to other secondary arrangements (e.g., inv7q11.23). A polymorphism of human inversions is documented by the InvFEST database (a database that stores information about clinical predictions, validations, frequency of inversions, etc.), but only a small fraction of these inversions is validated, and a detailed analysis is complicated by the frequent location of breakpoints within regions of repetitive sequences.
Taking advantage of evolving and improving sequencing methods, human chromosome 8 is now available as a gapless, end-to-end assembly. Thanks to advances in long-read sequencing technologies, its centromere, telomeres, duplicated gene families and repeat-rich regions are now fully sequenced. We were interested to assess if the new assembly altered our understanding of the potential impact of non-B DNA structures within this completed chromosome sequence. It has been shown that non-B secondary structures, such as G-quadruplexes, hairpins and cruciforms, have important regulatory functions and potential as targeted therapeutics. Therefore, we analysed the presence of putative G-quadruplex forming sequences and inverted repeats in the current human reference genome (GRCh38) and in the new end-to-end assembly of chromosome 8. The comparison revealed that the new assembly contains significantly more inverted repeats and G-quadruplex forming sequences compared to the current reference sequence. This observation can be explained by improved accuracy of the new sequencing methods, particularly in regions that contain extensive repeats of bases, as is preferred by many non-B DNA structures. These results show a significant underestimation of the prevalence of non-B DNA secondary structure in previous assembly versions of the human genome and point to their importance being not fully appreciated. We anticipate that similar observations will occur as the improved sequencing technologies fill in gaps across the genomes of humans and other organisms.
- MeSH
- G-Quadruplexes * MeSH
- Genome, Human MeSH
- Sequence Inversion * MeSH
- Humans MeSH
- Chromosomes, Human, Pair 8 * MeSH
- Sequence Analysis, DNA MeSH
- Telomere * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Chromosome pairing in meiosis usually starts in the vicinity of the telomere attachment to the nuclear membrane and congregation of telomeres in the leptotene bouquet is believed responsible for bringing homologue pairs together. In a heterozygote for an inversion of a rye (Secale cereale L.) chromosome arm in wheat, a distal segment of the normal homologue is capable of chiasmate pairing with its counterpart in the inverted arm, located near the centromere. Using 3D imaging confocal microscopy, we observed that some telomeres failed to be incorporated into the bouquet and occupied various positions throughout the entire volume of the nucleus, including the centromere pole. Rye telomeres appeared ca. 21 times more likely to fail to be included in the telomere bouquet than wheat telomeres. The frequency of the out-of-bouquet rye telomere position in leptotene was virtually identical to the frequency of telomeres deviating from Rabl's orientation in the nuclei of somatic cells, and was similar to the frequency of synapsis of the normal and inverted chromosome arms, but lower than the MI pairing frequency of segments of these two arms normally positioned across the volume of the nucleus. Out-of-position placement of the rye telomeres may be responsible for reduced MI pairing of rye chromosomes in hybrids with wheat and their disproportionate contribution to aneuploidy, but appears responsible for initiating chiasmate pairing of distantly positioned segments of homology in an inversion heterozygote.
- MeSH
- Cell Nucleus genetics ultrastructure MeSH
- Centromere chemistry ultrastructure MeSH
- Chimera genetics MeSH
- Chromosome Inversion * MeSH
- Chromosomes, Plant chemistry ultrastructure MeSH
- Species Specificity MeSH
- Heterozygote MeSH
- In Situ Hybridization, Fluorescence MeSH
- Microscopy, Confocal MeSH
- Chromosome Pairing MeSH
- Image Processing, Computer-Assisted statistics & numerical data MeSH
- Meiotic Prophase I * MeSH
- Triticum genetics ultrastructure MeSH
- Plant Cells metabolism ultrastructure MeSH
- Telomere chemistry ultrastructure MeSH
- Secale genetics ultrastructure MeSH
- Imaging, Three-Dimensional methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Chromosomal inversions occur in natural populations of many species, and may underlie reproductive isolation and local adaptation. Traditional methods of inversion discovery are labor-intensive and lack sensitivity. Here, we report the use of three-dimensional contact probabilities between genomic loci as assayed by chromosome-conformation capture sequencing (Hi-C) to detect multi-megabase polymorphic inversions in four barley genotypes. Inversions are validated by fluorescence in situ hybridization and Bionano optical mapping. We propose Hi-C as a generally applicable method for inversion discovery in natural populations.
Pericentric inversion of human chromosome 9 [inv(9)] is a relatively common cytogenetic finding. It is largely considered a clinically insignificant variant of the normal human karyotype. However, numerous studies have suggested its possible association with certain pathologies, e.g., infertility, habitual abortions or schizophrenia. We analysed the incidence of inv(9) and the spectrum of clinical indications for karyotyping among inv(9) carriers in three medical genetics departments in Prague. In their cytogenetic databases, among 26,597 total records we identified 421 (1.6 %) cases of inv(9) without any concurrent cytogenetic pathology. This study represents the world's largest epidemiological study on inv(9) to date. The incidence of inv(9) calculated in this way from diagnostic laboratory data does not differ from the incidence of inv(9) in three specific populationbased samples of healthy individuals (N = 4,166) karyotyped for preventive (amniocentesis for advanced maternal age, gamete donation) or legal reasons (children awaiting adoption). The most frequent clinical indication in inv(9) carriers was "idiopathic reproductive failure" - 37.1 %. The spectra and percentages of indications in individuals with inv(9) were further statistically evaluated for one of the departments (N = 170) by comparing individuals with inv(9) to a control group of 661 individuals with normal karyotypes without this inversion. The proportion of clinical referrals for "idiopathic reproductive failure" among inv(9) cases remains higher than in controls, but the difference is not statistically significant for both genders combined. Analysis in separated genders showed that the incidence of "idiopathic reproductive failure" could differ among inv(9) female and male carriers.
- MeSH
- Chromosome Inversion genetics MeSH
- Cytogenetics MeSH
- Child MeSH
- Karyotyping MeSH
- Humans MeSH
- Chromosomes, Human, Pair 9 genetics MeSH
- Adolescent MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Inverted repeats (IRs) can facilitate structural variation as crucibles of genomic rearrangement. Complex duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) rearrangements that contain breakpoint junctions within IRs have been recently associated with both MECP2 duplication syndrome (MIM#300260) and Pelizaeus-Merzbacher disease (PMD, MIM#312080). We investigated 17 unrelated PMD subjects with copy number gains at the PLP1 locus including triplication and quadruplication of specific genomic intervals-16/17 were found to have a DUP-TRP/INV-DUP rearrangement product. An IR distal to PLP1 facilitates DUP-TRP/INV-DUP formation as well as an inversion structural variation found frequently amongst normal individuals. We show that a homology-or homeology-driven replicative mechanism of DNA repair can apparently mediate template switches within stretches of microhomology. Moreover, we provide evidence that quadruplication and potentially higher order amplification of a genomic interval can occur in a manner consistent with rolling circle amplification as predicted by the microhomology-mediated break induced replication (MMBIR) model.
- MeSH
- Chromosome Breakpoints MeSH
- Chromosome Inversion MeSH
- Gene Duplication * MeSH
- Gene Dosage MeSH
- Humans MeSH
- Myelin Proteolipid Protein genetics MeSH
- Pelizaeus-Merzbacher Disease genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Recent advances in sequencing allow population-genomic data to be generated for virtually any species. However, approaches to analyse such data lag behind the ability to generate it, particularly in nonmodel species. Linkage disequilibrium (LD, the nonrandom association of alleles from different loci) is a highly sensitive indicator of many evolutionary phenomena including chromosomal inversions, local adaptation and geographical structure. Here, we present linkage disequilibrium network analysis (LDna), which accesses information on LD shared between multiple loci genomewide. In LD networks, vertices represent loci, and connections between vertices represent the LD between them. We analysed such networks in two test cases: a new restriction-site-associated DNA sequence (RAD-seq) data set for Anopheles baimaii, a Southeast Asian malaria vector; and a well-characterized single nucleotide polymorphism (SNP) data set from 21 three-spined stickleback individuals. In each case, we readily identified five distinct LD network clusters (single-outlier clusters, SOCs), each comprising many loci connected by high LD. In A. baimaii, further population-genetic analyses supported the inference that each SOC corresponds to a large inversion, consistent with previous cytological studies. For sticklebacks, we inferred that each SOC was associated with a distinct evolutionary phenomenon: two chromosomal inversions, local adaptation, population-demographic history and geographic structure. LDna is thus a useful exploratory tool, able to give a global overview of LD associated with diverse evolutionary phenomena and identify loci potentially involved. LDna does not require a linkage map or reference genome, so it is applicable to any population-genomic data set, making it especially valuable for nonmodel species.
- MeSH
- Anopheles classification genetics MeSH
- Chromosome Inversion * MeSH
- Polymorphism, Single Nucleotide MeSH
- Evolution, Molecular MeSH
- Genetics, Population methods MeSH
- Sequence Analysis, DNA MeSH
- Cluster Analysis MeSH
- Smegmamorpha classification genetics MeSH
- Linkage Disequilibrium * MeSH
- Computational Biology methods MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
The bread wheat (Triticum aestivum L.) genotype "Chinese Spring" ("CS") is the reference base in wheat genetics and genomics. Pericentric rearrangements in this genotype were systematically assessed by analyzing homoeoloci for a set of nonredundant genes from Brachypodium distachyon, Triticum urartu, and Aegilops tauschii in the CS chromosome shotgun sequence obtained from individual chromosome arms flow-sorted from CS aneuploid lines. Based on patterns of their homoeologous arm locations, 551 genes indicated the presence of pericentric inversions in at least 10 of the 21 chromosomes. Available data from deletion bin-mapped expressed sequence tags and genetic mapping in wheat indicated that all inversions had breakpoints in the low-recombinant gene-poor pericentromeric regions. The large number of putative intrachromosomal rearrangements suggests the presence of extensive structural differences among the three subgenomes, at least some of which likely occurred during the production of the aneuploid lines of this hexaploid wheat genotype. These differences could have significant implications in wheat genome research where comparative approaches are used such as in ordering and orientating sequence contigs and in gene cloning.
BACKGROUND: Inversions are balanced structural chromosome rearrangements, which can influence gene expression and the risk of unbalanced chromosome constitution in offspring. Many examples of inversion polymorphisms exist in human, affecting both heterochromatic regions and euchromatin. RESULTS: We describe a novel, 15 Mb long paracentric inversion, inv(21)(q21.1q22.11), affecting more than a third of human 21q. Despite of its length, the inversion cannot be detected using karyotyping due to similar band patterns on the normal and inverted chromosomes, and is therefore likely to escape attention. Its identification was aided by the repeated observation of the same pair of 150 kb long duplications present in cis on chromosome 21 in three Czech families subjected to microarray analysis. The finding prompted us to hypothesise that this co-occurrence of two remote duplications could be associated with an inversion of the intervening segment, and this speculation turned out to be right. The inversion was confirmed in a series of FISH experiments which also showed that the second copy of each of the duplications was always located at the opposite end of the inversion. The presence of the same pair of duplications in additional individuals reported in public databases indicates that the inversion may also be present in other populations. Three out of the total of about 4000 chromosomes 21 examined in our sample carried the duplications and were inverted, corresponding to carrier frequency of about 1/660. Although the breakpoints affect protein-coding genes, the occurrence of the inversion in normal parents and siblings of our patients and the occurrence of the duplications in unaffected controls in databases indicate that this rare variant is rather non-pathogenic. The inverted segment carried an identical shared haplotype in the three families studied. The haplotypes, however, diverged very rapidly in the flanking regions, possibly pointing to an ancient founder event at the origin of the inversion. CONCLUSIONS: The identification of inv(21)(q21.1q22.11) supports the notion that paracentric inversions are the most common form of chromosomal variation and that some of them may still remain undetected.
- MeSH
- Autistic Disorder MeSH
- Chromosome Inversion * MeSH
- Founder Effect MeSH
- Phenotype MeSH
- Attention Deficit Disorder with Hyperactivity MeSH
- Polymorphism, Single Nucleotide MeSH
- Karyotyping MeSH
- Cohort Studies MeSH
- Humans MeSH
- Chromosomes, Human, Pair 21 * genetics MeSH
- Intellectual Disability MeSH
- Check Tag
- Humans MeSH
Equidae is a small family which comprises horses, African and Asiatic asses, and zebras. Despite equids having diverged quite recently, their karyotypes underwent rapid evolution which resulted in extensive differences among chromosome complements in respective species. Comparative mapping using whole-chromosome painting probes delineated genome-wide chromosome homologies among extant equids, enabling us to trace chromosome rearrangements that occurred during evolution. In the present study, we performed subchromosomal comparative mapping among seven Equidae species, representing the whole family. Region-specific painting and bacterial artificial chromosome probes were used to determine the orientation of evolutionarily conserved segments with respect to centromere positions. This allowed assessment of the configuration of all fusions occurring during the evolution of Equidae, as well as revealing discrepancies in centromere location caused by centromere repositioning or inversions. Our results indicate that the prevailing type of fusion in Equidae is centric fusion. Tandem fusions of the type telomere-telomere occur almost exclusively in the karyotype of Hartmann's zebra and are characteristic of this species' evolution. We revealed inversions in segments homologous to horse chromosomes 3p/10p and 13 in zebras and confirmed inversions in segments 4/31 in African ass, 7 in horse and 8p/20 in zebras. Furthermore, our mapping results suggested that centromere repositioning events occurred in segments homologous to horse chromosomes 7, 8q, 10p and 19 in the African ass and an element homologous to horse chromosome 16 in Asiatic asses. Centromere repositioning in chromosome 1 resulted in three different chromosome types occurring in extant species. Heterozygosity of the centromere position of this chromosome was observed in the kiang. Other subtle changes in centromere position were described in several evolutionary conserved chromosomal segments, suggesting that tiny centromere repositioning or pericentric inversions are quite frequent in zebras and asses.
- MeSH
- Centromere genetics metabolism MeSH
- Chromosome Inversion MeSH
- Species Specificity MeSH
- Equidae classification genetics MeSH
- Gene Rearrangement MeSH
- In Situ Hybridization, Fluorescence MeSH
- Karyotype * MeSH
- Chromosome Painting methods MeSH
- Chromosome Mapping MeSH
- Evolution, Molecular * MeSH
- Telomere genetics MeSH
- Chromosomes, Artificial, Bacterial MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH