Bicarbonate and phosphate constitute major salivary buffering components, and their importance consists in the neutralization of acidic gastric contents during reflux episodes. In this work, capillary electrophoresis with capacitively coupled contactless conductivity detector was applied for the analysis of bicarbonate, phosphate, and another inorganic (chloride, nitrite, nitrate, sulfate, thiocyanate) and organic anions (acetate, butyrate) to evaluate their levels in saliva. The background electrolytes of different composition and pH between 6.02-9.41 were assessed for the bicarbonate and phosphate determination by comparison of the real analyses of a model solution with the simulation by PeakMaster software. The optimized background electrolyte was composed of 10 mM 2-(N-morpholino)ethanesulfonic acid, 20 mM arginine, and 30 µM cetyltrimethylammonium bromide, pH 8.95. Using this BGE, the anion levels were compared in saliva from 20 patients suffering from gastroesophageal reflux disease (GERD) and saliva from 12 healthy subjects. Bicarbonate levels were significantly elevated in saliva from GERD patients suggesting the possible applicability of bicarbonate as a biomarker in non-invasive diagnostics of GERD by CE-C4 D.
An original electrophoresis apparatus for simultaneous rapid determination of cations and anions has been designed and tested. The separation part of the apparatus consists of two identical fused-silica capillaries, each with a length of 10.5cm and inner diameter of 25μm. The injection space is formed by the crossing of four channels in a plexiglass cross-piece. The capillaries pass through two opposing channels and their injection ends are located opposite one another at a distance of approx. 0.5mm in the centre of the crossing point. The exit ends of the capillaries are placed in vessels containing the background electrolyte in which are immersed the electrodes of a high-voltage source. Contactless conductivity detectors with semi-cylindrical electrodes are located 2cm from the exit ends of the capillaries. The injection part of the apparatus consists of two piezoelectric micro-pumps bringing the solution through another channel in the cross-piece to the injection ends of the capillary. During the injection, the sample is brought through one of them and is injected electrokinetically for a defined time. Then the sample zone is forced out of the injection space by a stream of background electrolyte from the second micro-pump. The timing of the injection process is computer-controlled. Thus the equipment can be considered to constitute electrophoresis in one capillary with injection into its centre. The use of short capillaries and miniature micro-pumps without other mechanical components enabled the construction of the apparatus on a board with dimensions of 20×25cm. The proposed equipment was used to test simultaneous separation of a mixture of cations and anions, NH4(+), K(+), Ca(2+), Mg(2+), Sr(2+), Ba(2+), Cl(-), NO3(-), SO4(2-), ClO3(-) and F(-), in BGE with composition 500mM HAc+20mM Tris+2mM 18-crown-6 (pH 3.3). Baseline separation of all the components was achieved in time less than 1min. Quantification of the content of nitrate nitrogen (determined as NO3(-)), ammoniacal nitrogen (determined as NH4(+)), K2O (determined as K(+)) and SO3 (determined as SO4(2-)) was performed on a real-world sample of mineral fertiliser. The determined compositions differed from the declared contents by an amount of 0.5-5.6%; the RSD value expressing the repeatability of the determination was in the range 3.4-7.5%. The LOD values were in the range from 6.9μM (K(+)) to 10.6μM (NH4(+)).
The analysis of ionic content of exhaled breath condensate (EBC) from one single breath by CE with C(4) D is demonstrated for the first time. A miniature sampler made from a 2-mL syringe and an aluminum cooling cylinder for collection of EBC was developed. Various parameters of the sampler that influence its collection efficiency, repeatability, and effect of respiratory patterns were studied in detail. Efficient procedures for the cleanup of the miniature sampler were also developed and resulted in significant improvement of sampling repeatability. Analysis of EBC was performed by CE-C(4) D in a 60 mM MES/l-histidine BGE with 30 μM CTAB and 2 mM 18-crown-6 at pH 6 and excellent repeatability of migration times (RSD < 1.3% (n = 7)) and peak areas (RSD < 7% (n = 7)) of 12 inorganic anions, cations, and organic acids was obtained. It has been shown that the breathing pattern has a significant impact on the concentration of the analytes in the collected EBC. As the ventilatory pattern can be easily controlled during single exhalation, the developed collection system and method provides a highly reproducible and fast way of collecting EBC with applicability in point-of-care diagnostics.
- MeSH
- anionty analýza MeSH
- bronchiální astma diagnóza MeSH
- dechové testy přístrojové vybavení metody MeSH
- design vybavení MeSH
- elektroforéza kapilární přístrojové vybavení metody MeSH
- kationty analýza MeSH
- konduktometrie přístrojové vybavení metody MeSH
- lidé MeSH
- miniaturizace MeSH
- odběr biologického vzorku MeSH
- reprodukovatelnost výsledků MeSH
- vydechnutí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- anionty analýza diagnostické užití krev MeSH
- fosfáty analýza diagnostické užití krev MeSH
- kationty analýza diagnostické užití krev MeSH
- krevní proteiny analýza diagnostické užití MeSH
- lidé MeSH
- oxid uhličitý diagnostické užití MeSH
- parciální tlak MeSH
- poruchy acidobazické rovnováhy diagnóza klasifikace MeSH
- Check Tag
- lidé MeSH
- Geografické názvy
- Česká republika MeSH