- MeSH
- acyklovir * farmakologie MeSH
- DNA-dependentní DNA-polymerasy MeSH
- exodeoxyribonukleasy MeSH
- mutace MeSH
- Simplexvirus * genetika MeSH
- virové proteiny MeSH
- Publikační typ
- dopisy MeSH
- komentáře MeSH
- Geografické názvy
- Česká republika MeSH
INTRODUCTION AND AIM: Infections caused by herpes simplex viruses (HSV) are frequent in the human population. Because of the widespread use of long-term treatment or prophylaxis by anti-herpetic antivirals in various specific medical contexts (immunosuppression, recurrent infections), the level of antiviral resistance is increasing. According to previous studies, there is a low resistance level in immunocompetent populations but a relatively high level in populations with immunodeficiency. However, there has been no study from the Czech Republic. This study presents results of a single-centre retrospective study from the Czech Republic. MATERIALS AND METHODS: Deep frozen DNA from patients with suspected clinical antiviral failure over a long time period (2009-2016) - a total of 15 isolates of HSV1 and seven of HSV2 - were examined for the presence of mutations associated with antiviral resistance. Sequence analysis was performed using an ABI PRISM 3500xL Genetic Analyzer (Applied Biosystems®). RESULTS: There were no mutations associated with resistance to antivirals inside the UL23 gene in HSV1 isolates. However, resistant mutation D672N (nucleotide change G2014A) was found inside the UL30 gene in seven of the isolates. One mutation associated with resistance to acyclovir (M183stop) was found inside the UL23 gene in one HSV2 isolate. Resistant mutation E678G (nucleotide change A2033G) was identified inside the UL30 gene in six of the HSV2 isolates. CONCLUSIONS: This study confirmed the presence of resistance mutations within the Czech population, but it will be necessary to examine a higher number of isolates for further conclusions.
- MeSH
- acyklovir farmakologie MeSH
- antivirové látky farmakologie MeSH
- DNA-dependentní DNA-polymerasy genetika MeSH
- exodeoxyribonukleasy genetika MeSH
- herpes simplex farmakoterapie virologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mutace MeSH
- neúspěšná terapie MeSH
- retrospektivní studie MeSH
- Simplexvirus účinky léků genetika MeSH
- virová léková rezistence genetika MeSH
- virové proteiny genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
The DNA fragment d(GCGAAGC), occurring in the initial replication stage of the phage ?X174, in herpes simplex virus, in the promoter region of the heat-shock gene of E. coli and in rRNA genes is still in the focus of biological and biochemical research. This shortest hairpin guided us to study the relationship between the structure and function of other heptamers with changing triplet sequence in the center of the ODN molecule (AAA, GGG, CCC). Replacement of the central part of ODN was chosen because it was initially expected that the double peak of the G oxidation signal is due to the difference in the positions of G in the stem and a loop of the initially investigated d (GCGAAGC) fragment. The experiments, however, did not confirm this assumption. In this work, we have focused on the study of the interaction of selected heptamers with the surface of the mercury in order to answer the question to what extent the A + C reduction peaks and double-peak G oxidation signals are able to reflect the structures of heptamers affected by different central tri¬nucleotide sequences. Guanine residues d(GCGGGGC) in the structure of the quadruplex are resistant to structural changes and the voltammetric responses are therefore mini¬mized. The interactions of quadruplexes with the surface of the electrode are also weaker than interactions of hairpin structures d(GCGAAGC), d(GCAAAGC) and the duplex structure d(GCCCCGC). The presented research has shown that a small change in the central sequence not only can alter the structure (tetramolecular quadruplex, hairpin, bimolecular duplex) but also influences the electrochemical and adsorption properties of these molecules on the charged interface. Although electrochemistry is able to detect the various structural layout of the studied heptamers, it is desirable to support the electrochemical conclusions with other methods, e.g., UV-VIS absorption spectra reflecting chiroptic properties of ODNs and separation methods, such as gel electrophoresis (PAGE).
Genetická diverzita a epidemiologie infekce VZV jsou ovlivňovány místem výskytu onemocnění, charakterem klimatu v dané lokalitě a populačními faktory v oblasti. Studium genetické diverzity VZV pak může mít přímé implikace jak v epidemiologické a evoluční analýze, tak i v možném definování genetických korelátů virové patogenicity či rezistence k antivirotikům.
The genetic diversity and epidemiology of VZV results from an interplay of the geographic area, climate conditions, and population factors. Studies of the genetic diversity of VZV can have direct implications for both the epidemiological and evolutionary analyses and identification of the genetic correlates of VZV pathogenicity or resistance to antiviral drugs.
- Klíčová slova
- varicella-zoster virus, molekulární genetika,
- MeSH
- DNA virů MeSH
- genom virový * MeSH
- genotypizační techniky * MeSH
- herpes zoster imunologie prevence a kontrola MeSH
- lidé MeSH
- plané neštovice imunologie prevence a kontrola přenos MeSH
- rekombinace genetická MeSH
- Simplexvirus genetika patogenita MeSH
- vakcína proti planým neštovicím MeSH
- virus varicella zoster * genetika patogenita MeSH
- Check Tag
- lidé MeSH
- MeSH
- DNA virů genetika MeSH
- glykoproteiny genetika MeSH
- myši MeSH
- nemoci nervového systému etiologie mikrobiologie patologie MeSH
- proteiny virového obalu genetika MeSH
- rekombinace genetická MeSH
- replikace viru MeSH
- Simplexvirus genetika imunologie patogenita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH