Oxidative stress is the imbalance between the oxygen radicals and antioxidant defence system of the organism and leads to cell damage. Antioxidant enzymes are an important part of the defense against oxidative stress and the crucial ones are superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. Superoxide dismutase catalyses the conversion of superoxide to hydrogen peroxide, which can be further degraded by catalase to oxygen and water. Peroxidases are enzymes catalysing the reduction of the number of peroxides to alcohols. Glutathion peroxidases are selenium dependent enzymes using reduced glutathione (GSH) as a cofactor. They catalyze the conversion of hydrogen peroxide to water while the reduced glutathione is oxidized. The GSH is then being renewed by the activity of glutathione reductase, another antioxidative enzyme that reduces oxidized glutathione (GSSG) to GSH.
- MeSH
- antioxidancia * fyziologie chemie metabolismus MeSH
- glutathionperoxidasa analýza chemie metabolismus MeSH
- glutathionreduktasa analýza chemie metabolismus MeSH
- katalasa analýza chemie metabolismus MeSH
- oxidační stres * MeSH
- superoxiddismutasa analýza chemie metabolismus MeSH
- Publikační typ
- práce podpořená grantem MeSH
A new method of the light microscopy detection of BrdU-labeled DNA in situ is described. It is based on the oxidative attack at the deoxyribose moiety by copper(I) in the presence of oxygen, which leads to the abstraction of hydrogen atom from deoxyribose culminating in the elimination of the nucleobase, scission of the nucleic-acid strand and formation of frequent gaps. The gaps allow the reaction of the antibodies with the commonly used markers of replication (e.g. 5-bromo-2'-deoxyuridine), which are otherwise masked. The method developed makes it possible to detect nuclear and mitochondrial DNA replication efficiently. In most cases, it does not inhibit effective protein detections and in addition enables simultaneous localization of newly-synthesized RNA. The alternative presently-used methods result in protein denaturation and/or extensive DNA cleavage followed by the DNA-bound proteins peeling off.
- MeSH
- barvení a značení MeSH
- bromodeoxyuridin chemie metabolismus MeSH
- buněčné jádro metabolismus MeSH
- deoxyribonukleasa I MeSH
- fluorescenční protilátková technika nepřímá MeSH
- HeLa buňky MeSH
- kyselina askorbová chemie MeSH
- kyslík chemie MeSH
- lidé MeSH
- mitochondriální DNA chemie genetika MeSH
- oxidace-redukce MeSH
- replikace DNA * MeSH
- síran měďnatý chemie MeSH
- štěpení DNA * MeSH
- superoxiddismutasa chemie MeSH
- superoxidy chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
An oxidant/antioxidant imbalance is thought to play an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). We hypothesized that antioxidant capacity reflected by erythrocyte glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) activities, and serum levels of the lipid peroxidation product malondialdehyde (MDA), may be related to the severity of obstructive lung impairment in patients with COPD. Erythrocyte GPx, SOD and CAT activities, and serum levels of MDA were measured in 79 consecutive patients with stable COPD. Pulmonary functional tests were assessed by bodyplethysmography. Moderate COPD (FEV1 50-80 %) was present in 23, and severe COPD (FEV1 < 50 %) in 56 patients. Erythrocyte GPx activity was significantly lower, and serum MDA levels were significantly higher in patients with severe COPD compared to patients with moderate COPD (GPx: 43.1±1.5 vs. 47.7±2.9 U/gHb, p<0.05, MDA: 2.4±0.1 vs. 2.1±0.1 nmol/ml, p<0.05). Linear regression analysis revealed a significant direct relationship between FEV1 and erythrocyte GPx activity (r = 0.234, p<0.05), and a significant inverse relationship between FEV1 and serum MDA levels (r = -0.239, p<0.05). However, no differences were observed in the erythrocyte SOD and CAT activities between the two groups of patients with different severity of COPD. Findings of the present study suggest that antioxidant capacity reflected by erythrocyte GPx activity and serum levels of the lipid peroxidation product MDA are linked to the severity of COPD.
- MeSH
- chronická obstrukční plicní nemoc etiologie krev MeSH
- financování vládou MeSH
- glutathionperoxidasa chemie krev škodlivé účinky MeSH
- katalasa chemie krev škodlivé účinky MeSH
- lidé MeSH
- malondialdehyd chemie krev škodlivé účinky MeSH
- oxidační stres genetika účinky léků MeSH
- peroxidace lipidů genetika MeSH
- superoxiddismutasa chemie krev škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- srovnávací studie MeSH
Two classes of newly synthesized amphiphilic compounds, phenolic antioxidants ("phenolics") and N-oxides exert in vivo antioxidant effects on live S. cerevisiae cells. Both groups have low toxicity, phenolics being more toxic than N-oxides and compounds with a longer alkyl chain having higher toxicity than those with a shorter alkyl chain. Phenolic antioxidants protect yeast cells exposed to the superoxide producer paraquat and peroxyl generator tert-butylhydroperoxide better than N-oxides at 3-fold higher concentration. Both types of antioxidants enhance the survival of pro-oxidant-exposed cells of S. cerevisiae mutants deficient in cytosolic and/or mitochondrial superoxide dismutase and could be good compounds which mimic the role of superoxide dismutases. The results of measurement of antioxidant activity in an in vitro chemiluminescence test differ from the results obtained in vivo with S. cerevisiae superoxide dismutase mutants. In contrast to their action on live cells, phenolics are less effective than N-oxides in preventing lipid peroxidation of an emulsion of lipids isolated from S. cerevisiae membranes.
- MeSH
- antioxidancia farmakologie chemie metabolismus MeSH
- fenoly farmakologie chemie metabolismus MeSH
- financování organizované využití MeSH
- flavonoidy farmakologie chemie metabolismus MeSH
- oxidy dusíku farmakologie chemie metabolismus MeSH
- peroxidace lipidů účinky záření MeSH
- reaktivní formy kyslíku farmakologie chemie metabolismus MeSH
- Saccharomyces cerevisiae cytologie chemie růst a vývoj MeSH
- superoxiddismutasa farmakologie chemie metabolismus MeSH
- MeSH
- alfa-1-adrenergní receptory - antagonisté chemie MeSH
- antihypertenziva * MeSH
- antioxidancia MeSH
- beta blokátory chemie MeSH
- hmotnostní spektrometrie metody využití MeSH
- hypertenze * farmakoterapie MeSH
- karbazoly * farmakologie MeSH
- lidé MeSH
- neutrofily * MeSH
- peroxidasa MeSH
- propanolaminy * farmakologie MeSH
- superoxiddismutasa chemie MeSH
- superoxidy * chemie MeSH
- vazodilatancia MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
Superoxide dismutases, both cytosolic Cu, Zn-SOD encoded by SOD1 and mitochondrial Mn-SOD encoded by SOD2, serve Saccharomyces cerevisiae cells for defense against the superoxide radical but the phenotypes of sod1A and sod2delta mutant strains are different. Compared with the parent strain and the sod1delta mutant, the sod2delta mutant shows a much more severe growth defect at elevated salt concentrations, which is partially rescued by 2 mmol/L glutathione. The growth of all three strains is reduced at 37 degrees C, the sod2delta showing the highest sensitivity, especially when cultured in air. Addition of 1 mmol/L glutathione to the medium restores aerobic growth of the sod1delta mutant but has only a minor effect on the growth of the sod2delta strain at 37 degrees C. The sod2delta strain is also sensitive to AsIIl and AsV and its sensitivity is much more pronounced under aerobic conditions. These results suggest that, unlike the Sodlp protein, whose major role is oxidative stress defense, Sod2p also plays a role in protecting S. cerevisiae cells against other stresses--high osmolarity, heat and metalloid stress.
- MeSH
- finanční podpora výzkumu jako téma MeSH
- fyziologický stres genetika imunologie klasifikace MeSH
- osmotický tlak fyziologie MeSH
- oxidační stres genetika imunologie účinky léků MeSH
- reaktivní formy kyslíku imunologie metabolismus škodlivé účinky MeSH
- Saccharomyces cerevisiae - proteiny genetika imunologie MeSH
- superoxiddismutasa chemie imunologie metabolismus MeSH
- volné radikály imunologie metabolismus škodlivé účinky MeSH
- vysoká teplota škodlivé účinky MeSH
- MeSH
- antioxidancia chemie MeSH
- finanční podpora výzkumu jako téma MeSH
- nenasycené mastné kyseliny biosyntéza metabolismus MeSH
- oxidy chemie metabolismus MeSH
- peroxidace lipidů genetika MeSH
- polymerázová řetězová reakce využití MeSH
- Saccharomyces cerevisiae enzymologie genetika metabolismus MeSH
- superoxiddismutasa chemie MeSH
- Publikační typ
- srovnávací studie MeSH
- MeSH
- finanční podpora výzkumu jako téma MeSH
- fyziologický stres enzymologie MeSH
- glutathionperoxidasa chemie MeSH
- látky reagující s kyselinou thiobarbiturovou chemie MeSH
- mladiství fyziologie MeSH
- modely u zvířat MeSH
- mozek enzymologie MeSH
- pohlaví MeSH
- potkani Wistar metabolismus MeSH
- superoxiddismutasa chemie MeSH
- zvířata MeSH
- Check Tag
- mladiství fyziologie MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- srovnávací studie MeSH
- MeSH
- akrylamidy analýza chemie MeSH
- modely u zvířat MeSH
- superoxiddismutasa analýza chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH