CDK13-related disorder, also known as congenital heart defects, dysmorphic facial features and intellectual developmental disorder (CHDFIDD) is associated with mutations in the CDK13 gene encoding transcription-regulating cyclin-dependent kinase 13 (CDK13). Here, we focused on the development of craniofacial structures and analyzed early embryonic stages in CHDFIDD mouse models, with one model comprising a hypomorphic mutation in Cdk13 and exhibiting cleft lip/palate, and another model comprising knockout of Cdk13, featuring a stronger phenotype including midfacial cleft. Cdk13 was found to be physiologically expressed at high levels in the mouse embryonic craniofacial structures, namely in the forebrain, nasal epithelium and maxillary mesenchyme. We also uncovered that Cdk13 deficiency leads to development of hypoplastic branches of the trigeminal nerve including the maxillary branch. Additionally, we detected significant changes in the expression levels of genes involved in neurogenesis (Ache, Dcx, Mef2c, Neurog1, Ntn1, Pou4f1) within the developing palatal shelves. These results, together with changes in the expression pattern of other key face-specific genes (Fgf8, Foxd1, Msx1, Meis2 and Shh) at early stages in Cdk13 mutant embryos, demonstrate a key role of CDK13 in the regulation of craniofacial morphogenesis.
- MeSH
- Cyclin-Dependent Kinases metabolism genetics MeSH
- Embryo, Mammalian metabolism MeSH
- Embryonic Development * genetics MeSH
- Phenotype MeSH
- Skull embryology pathology MeSH
- Intellectual Disability genetics MeSH
- Disease Models, Animal * MeSH
- Mutation genetics MeSH
- Mice MeSH
- Trigeminal Nerve embryology MeSH
- Neurogenesis * genetics MeSH
- Face embryology abnormalities MeSH
- Doublecortin Protein MeSH
- Cleft Palate genetics pathology embryology MeSH
- Cleft Lip genetics pathology embryology MeSH
- Gene Expression Regulation, Developmental * MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
In this article, we focused on the impact of precisely chemically modified FLI maturation medium enriched with fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), insulin-like growth factor 1 (IGF1), and polyvinyl alcohol (PVA) and its potential to improve the efficiency of in vitro production of porcine embryos. We hypothesized that enhancing the composition of the maturation medium could result in an elevated production of embryos in vitro and can affect EGA. FLI medium resulted in a significantly higher rate of oocyte blastocyst maturation and formation compared to the control DMEM medium. In addition, immunocytochemical labelling confirmed the detection of UBF in 4-cell FLI parthenogenic embryos, suggesting similarities with natural embryo development. Through RNAseq analysis, upregulated genes present in 4-cell FLI embryos were found to play key roles in important biological processes such as cell proliferation, cell differentiation, and transcriptional regulation. Based on our findings, we demonstrated the positive influence of FLI medium in the evaluation of in vitro embryo production, EGA detection, transcriptomic and proteomic profile, which was confirmed by the positive activation of the embryonal genome in the 4-cell stage of parthenogenetically activated embryos.
- MeSH
- Blastocyst drug effects metabolism MeSH
- Fertilization in Vitro MeSH
- Fibroblast Growth Factor 2 * pharmacology MeSH
- Insulin-Like Growth Factor I * pharmacology MeSH
- Culture Media * chemistry pharmacology MeSH
- Leukemia Inhibitory Factor * pharmacology MeSH
- Oocytes MeSH
- Swine embryology genetics MeSH
- Proteomics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) exhibit multilineage differentiation potential, adhere to plastic, and express a specific set of surface markers-CD105, CD73, CD90. Although there are relatively well-established differentiation protocols for WJ-MSCs, the exact molecular mechanisms involved in their in vitro long-term culture and differentiation remain to be elucidated. In this study, the cells were isolated from Wharton's jelly of umbilical cords obtained from healthy full-term deliveries, cultivated in vitro, and differentiated towards osteogenic, chondrogenic, adipogenic and neurogenic lineages. RNA samples were isolated after the differentiation regimen and analyzed using an RNA sequencing (RNAseq) assay, which led to the identification of differentially expressed genes belonging to apoptosis-related ontological groups. ZBTB16 and FOXO1 were upregulated in all differentiated groups as compared to controls, while TGFA was downregulated in all groups. In addition, several possible novel marker genes associated with the differentiation of WJ-MSCs were identified (e.g., SEPTIN4, ITPR1, CNR1, BEX2, CD14, EDNRB). The results of this study provide an insight into the molecular mechanisms involved in the long-term culture in vitro and four-lineage differentiation of WJ-MSCs, which is crucial to utilize WJ-MSCs in regenerative medicine.
- MeSH
- Apoptosis genetics MeSH
- Cell Differentiation genetics MeSH
- Chondrocytes MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Mesenchymal Stem Cells * MeSH
- Osteoblasts MeSH
- Nerve Tissue Proteins MeSH
- Transcriptome MeSH
- Adipocytes MeSH
- Wharton Jelly * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Germ cell quality is a key prerequisite for successful fertilization and early embryo development. The quality is determined by the fine regulation of transcriptomic and proteomic profiles, which are prone to alteration by assisted reproduction technology (ART)-introduced in vitro methods. Gaining evidence shows the ART can influence preset epigenetic modifications within cultured oocytes or early embryos and affect their developmental competency. The aim of this review is to describe ART-determined epigenetic changes related to the oogenesis, early embryogenesis, and further in utero development. We confront the latest epigenetic, related epitranscriptomic, and translational regulation findings with the processes of meiotic maturation, fertilization, and early embryogenesis that impact the developmental competency and embryo quality. Post-ART embryo transfer, in utero implantation, and development (placentation, fetal development) are influenced by environmental and lifestyle factors. The review is emphasizing their epigenetic and ART contribution to fetal development. An epigenetic parallel among mouse, porcine, and bovine animal models and human ART is drawn to illustrate possible future mechanisms of infertility management as well as increase the awareness of the underlying mechanisms governing oocyte and embryo developmental complexity under ART conditions.
- Publication type
- Journal Article MeSH
- Review MeSH
The nucleolus is an important nucleus sub-organelle found in almost all eukaryotic cells. On the one hand, it is known as a differentiated active site of ribosome biogenesis in somatic cells, but on the other hand, in fully grown oocytes, zygotes, and early embryos (up to the major embryonic genome activation), it is in the form of a particular homogenous and compact structure called a fibrillar sphere. Nowadays, thanks to recent studies, we know many important functions of this, no doubt, interesting membraneless nucleus sub-organelle involved in oocyte maturation, embryonic genome activation, rRNA synthesis, etc. However, many questions are still unexplained and remain a mystery. Our aim is to create a comprehensive overview of the recent knowledge on the fibrillar sphere and envision how this knowledge could be utilized in further research in the field of biotechnology and nucleolotransfer therapy.
- Publication type
- Journal Article MeSH
- Review MeSH
Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss-of-function mutations in the gene encoding adrenergic receptor kinase 1 (ADRBK1 or GRK2). GRK2 cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate. GRK2 null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia-based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co-receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies.
- MeSH
- Ellis-Van Creveld Syndrome * MeSH
- G-Protein-Coupled Receptor Kinase 2 genetics MeSH
- Humans MeSH
- Mutation MeSH
- Hedgehog Proteins * genetics MeSH
- Wnt Signaling Pathway MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
The family Bifidobacteriaceae constitutes an important phylogenetic group that particularly includes bifidobacterial taxa demonstrating proven or debated positive effects on host health. The increasingly widespread application of probiotic cultures in the twenty-first century requires detailed classification to the level of particular strains. This study aimed to apply the glutamine synthetase class I (glnAI) gene region (717 bp representing approximately 50% of the entire gene sequence) using specific PCR primers for the classification, typing, and phylogenetic analysis of bifidobacteria and closely related scardovial genera. In the family Bifidobacteriaceae, this is the first report on the use of this gene for such purposes. To achieve high-value results, almost all valid Bifidobacteriaceae type strains (75) and 15 strains isolated from various environments were evaluated. The threshold value of the glnAI gene identity among Bifidobacterium species (86.9%) was comparable to that of other phylogenetic/identification markers proposed for bifidobacteria and was much lower compared to the 16S rRNA gene. Further statistical and phylogenetic analyses suggest that the glnAI gene can be applied as a novel genetic marker in the classification, genotyping, and phylogenetic analysis of isolates belonging to the family Bifidobacteriaceae.
- MeSH
- Genes, Bacterial MeSH
- Bifidobacterium classification enzymology MeSH
- DNA, Bacterial genetics MeSH
- DNA Primers MeSH
- Phylogeny * MeSH
- Genetic Markers MeSH
- Genotype MeSH
- Glutamate-Ammonia Ligase genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Bacterial Typing Techniques MeSH
- Publication type
- Journal Article MeSH
Melanoma is the least common form of skin tumor, but it is potentially the most dangerous and responsible for the majority of skin cancer deaths. We suggest that the skin microbiome might be changed during the progression of melanoma. The aim of this study is to compare the composition of the skin microbiota between different locations (skin and melanoma) of a MeLiM (Melanoma-bearing Libechov Minipig) pig model (exophytic melanoma). Ninety samples were used for PCR-DGGE analysis with primers specifically targeting the V3 region of the 16S rRNA gene. The profiles were used for cluster analysis by UPGMA and principal coordinate analysis PCoA and also to calculate the diversity index (Simpson index of diversity). By comparing the obtained results, we found that both bacterial composition and diversity were significantly different between the skin and melanoma microbiomes. The abundances of Fusobacterium and Trueperella genera were significantly increased in melanoma samples, suggesting a strong relationship between melanoma development and skin microbiome changes.
- MeSH
- Bacteria classification isolation & purification MeSH
- DNA, Bacterial genetics MeSH
- DNA Primers MeSH
- Fusobacterium genetics isolation & purification MeSH
- Genetic Variation MeSH
- Skin microbiology MeSH
- Melanoma microbiology pathology MeSH
- Microbiota * MeSH
- Swine, Miniature MeSH
- Disease Models, Animal MeSH
- Swine MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The order Lactobacillales represents a morphologically, metabolically, and physiologically diverse group of bacteria. Lactic acid bacteria represent the core of this phylogenetic group. They are a part of epiphytic microflora, fermented dairy, meat, fruit and vegetable products, and the digestive tract of humans and animals. Despite the fact that these bacteria form a phenotypically and genotypically heterogeneous group, their phylogenetic relationship enables to propose a common genetic marker usable in classification, typing, and phylogeny. By creation of consensus sequence based on available genomic sequences of some representatives of order Lactobacillales, a specific primer-pair binding variable region of aspS gene (length of 615 nts) encoding the aspartyl-tRNA synthetase was designed. This gene has not yet been used in classification and phylogeny of the order Lactobacillales, although it meets the requirements of molecular markers (distribution and single copy in bacterial genomes, functional constancy and genetic stability, sequence variability among taxonomic units, irreplaceable role in proteosynthesis). Primers were applied on 54 type and wild Lactobacillales strains. Obtained sequences allowed to provide alignments for purpose of phylogenetic tree reconstructions that uncovered particular phylogenetic clusters of vagococci/enterococci, obligately homofermentative and heterofermentative lactobacilli. Although a relatively short fragment of the aspS gene (approximately 33% of the complete gene sequence) was evaluated, much higher sequence variability (61.8% of pairwise identity) among strains examined compared with 16S rRNA gene (90.7%, length of 1318 nt) provides a relatively simple and effective tool for classification and typing of selected representatives of the order Lactobacillales.
- MeSH
- Aspartate-tRNA Ligase genetics MeSH
- Genes, Bacterial MeSH
- Bacterial Proteins genetics MeSH
- DNA, Bacterial genetics MeSH
- Genes, Essential MeSH
- Phylogeny * MeSH
- Genetic Markers MeSH
- Lactobacillales classification enzymology genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
Bifidobacteria are widely known for their probiotic potential; however, little is known regarding the ecological significance and potential probiotic effects of the phylogenetically related 'scardovial' genera (Aeriscardovia, Alloscardovia, Bombiscardovia, Galliscardovia, Neoscardovia, Parascardovia, Pseudoscardovia and Scardovia) and Gardnerella classified with bifidobacteria within the Bifidobacteriaceae family. Accurate classification and genotyping of bacteria using certain housekeeping genes is possible, whilst current phylogenomic analyses allow for extremely precise classification. Studies of applicable genetic markers may provide results comparable to those obtained from phylogenomic analyses of the family Bifidobacteriaceae. Segments of the glyS (624 nucleotides), pheS (555 nucleotides), rpsA (630 nucleotides), and rpsB (432 nucleotides) genes and their concatenated sequence were explored. The mean glyS, pheS, rpsB and rpsA gene sequence similarities calculated for Bifidobacterium taxa were 84.8, 85.2, 90.2 and 86.8%, respectively. Interestingly, the average value of the Average Nucleotide Identity among 67 type strains of the family Bifidobacteriaceae (84.70%) calculated based on values published recently was in agreement with the average pairwise similarity (84.6%) among 75 type strains of Bifidobacteriaceae family computed in this study using the concatenated sequences of four gene fragments. Similar to phylogenomic analyses, several gene sequence and phylogenetic analyses revealed that concatenated gene regions allow for classification of Bifidobacteriaceae strains into particular phylogenetic clusters and groups. Phylogeny reconstructed from the concatenated sequences assisted in defining two novel phylogenetic groups, the Bifidobacterium psychraerophilum group consisting of B. psychraerophilum, Bifidobacterium crudilactis and Bifidobacterium aquikefiri species and the Bifidobacterium bombi group consisting of B. bombi, Bifidobacterium bohemicum and Bifidobacterium commune.