"NV15-31063A"
Dotaz
Zobrazit nápovědu
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
Nestr.
V oblasti farmakologické léčby schizofrenie byl učiněn velký pokrok. Nicméně, moderní antipsychotická medikace je stále spojena s nežádoucími účinky, nízkou flexibilitou, přerušením léčby a nízkou efektivitou na negativní a kognitivní symptomy. V tomto ohledu je problematické zhodnotit účinek léků na mozkové buňky, které kontrolují naše myšlení a chování. Objev indukovaných pluripotentních kmenových buňek (iPSC) je průlomová technologie, která umožňuje změnit kožní nebo jiné buňky v buňky mozku (neurony, astrocyty a ligodendrocyty). Následně mohou být kultury pacientových buněk expandovány a vyšetřeny na Petriho misce. Tento projekt je zaměřen na využití technologie iPSC k vytvoření terapeutické platformy, která spojuje in-vivo a in-vitro postupy k testování účinků antipsychotik na buněčných kulturách individuálních pacientů. Výsledek zhodnocení efektu léků bude využit k doporučení budoucí léčby.; Substantial progress has been made in the pharmacological treatment of schizophrenia. However, modern antipsychotic medication is still a ssociated with side effects, poor compliance, drug discontinuation, and low efficacy on negative and cognitive symptoms. This field mainly lacks a sensitive means to assess the effects of drugs on the brain cells, which control our thinking and behaviour. The advent of induced pluripotent stem cell (iPSC) technology renders a breakthrough to convert skin cells, or other cell types, into brain cells (e.g., neurons, astrocytes, and oligodentrocyts), whereby patient-specific brain cells can be expanded and examined in a petri dish. This project is to employ iPSC technology to establish a therapeutic platform for individual patients, which conjoins in-vivo and in-vitro approaches to test the effects of antipsychotic drugs. The outcome of drug assessments will be used to recommend a patient’s future drug therapy.
- MeSH
- astrocyty MeSH
- biologické markery MeSH
- dendritické trny MeSH
- glutamátové receptory MeSH
- hodnocení léčiv MeSH
- indukované pluripotentní kmenové buňky MeSH
- klozapin analýza MeSH
- magnetická rezonanční tomografie MeSH
- nervový přenos MeSH
- neurony MeSH
- přeprogramování buněk MeSH
- schizofrenie farmakoterapie MeSH
- techniky in vitro MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- neurologie
- psychofarmakologie
- cytologie, klinická cytologie
- NLK Publikační typ
- závěrečné zprávy o řešení grantu AZV MZ ČR
Introduction: Therapeutic drug monitoring (TDM) of clozapine is a very useful method for verifying both the correct intake and the interindividual variability of its metabolism, thereby avoiding the risk of toxicity. The purposes of this paper were to discover how many patients using clozapine in common clinical practice have clozapine plasma concentration (PC) levels in the proposed reference range and to identify factors that influence clozapine PC levels. Methods: Our study included 100 inpatients (diagnosed with schizophrenia or schizoaffective disorder) taking standard doses of clozapine (100-700 mg/day). Clozapine concentration was measured by high-performance liquid chromatography. Correlations between doses and PC levels and the influence of smoking and gender on clozapine PC levels were calculated. Results: A large number of the patients (67%) had PC levels outside the proposed reference range. The clozapine PC levels were influenced by dose, gender, and cigarette smoking. Conclusion: The correlations between dose, gender, and cigarette smoking and clozapine PC levels highlighted by our study overlap other research. It was surprising to find such a large number of patients with clozapine PC levels outside the therapeutic range. This result suggests the importance of clozapine TDM due to misunderstood inter- and/or intraindividual variability or misestimated partial therapeutic compliance.
- Publikační typ
- časopisecké články MeSH
Klozapin je antipsychotikum s unikátními klinickými úèinky. Práce pøináší pøehled literatury, která hodnotí efekt klozapinu na morfologii a funkci jednotlivých bunìèných populací mozku s ohledem na pøedpokládanou neuropatologii schizofrenie. Ukazuje se, že klozapin má jedineèný mechanismus úèinku, který vedle specifického profilu receptorù, s nimiž interaguje, zahrnuje i další vlivy na bunìèné typy centrální nervové soustavy (CNS). Moduluje neuronální funkce, upravuje spolupráci v kortikálních mikrookruzích a funkce astroglie (cyklus glutamátu, trofické procesy). Zlepšuje narušenou cytoarchitekturu kortexu a koriguje synaptickou patologii a arborizaci dendritù neuronù. Dále má neuroprotektivní úèinky, které mohou bránit progresi neuronálního poškození a související klinické deterioraci.
Clozapine is an antipsychotic agent with unique clinical efficacy. This paper presents a review of evidence on clozapine effects on morphology and function of brain cells in the context of neuropathology of schizophrenia. It seems that clozapine exerts a unique mechanism of action that goes beyond the complex pattern of neuroreceptor interactions. It modulates neuronal activity - activates hypoactive and inhibits hyperactive neuronal states - improves cooperation in cortical microcircuits, improves astroglial functions (glu-tamate cycle, trophic processes). It has a potential to restitute abnormal cytoarchitecture, i. e. improve synaptic pathology and reduced dendritic arborization. Moreover, it acts as an neuroprotective agent with subsequent prevention of progressive neuronal damage with clinical deterioration.
- MeSH
- antagonisté dopaminu D2 MeSH
- antagonisté serotoninu MeSH
- antipsychotika farmakologie MeSH
- astrocyty účinky léků MeSH
- dopaminergní neurony účinky léků MeSH
- glutamáty účinky léků MeSH
- klozapin * farmakologie terapeutické užití MeSH
- mikroglie účinky léků MeSH
- mozková kůra účinky léků MeSH
- neuroplasticita MeSH
- psychotické poruchy farmakoterapie patofyziologie patologie MeSH
- schizofrenie * farmakoterapie patologie MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
This study elucidated the stage-specific roles of FGF2 signaling during neural development using in-vitro human embryonic stem cell-based developmental modeling. We found that the dysregulation of FGF2 signaling prior to the onset of neural induction resulted in the malformation of neural rosettes (a neural tube-like structure), despite cells having undergone neural induction. The aberrant neural rosette formation may be attributed to the misplacement of ZO-1, which is a polarized tight junction protein and shown co-localized with FGF2/FGFR1 in the apical region of neural rosettes, subsequently led to abnormal neurogenesis. Moreover, the FGF2 signaling inhibition at the stage of neural rosettes caused a reduction in cell proliferation, an increase in numbers of cells with cell-cycle exit, and premature neurogenesis. These effects may be mediated by NUMB, to which expression was observed enriched in the apical region of neural rosettes after FGF2 signaling inhibition coinciding with the disappearance of PAX6+/Ki67+ neural stem cells and the emergence of MAP2+ neurons. Moreover, our results suggested that the hESC-based developmental system reserved a similar neural stem cell niche in vivo.
- MeSH
- buněčná diferenciace účinky léků MeSH
- buněčné linie MeSH
- časosběrné zobrazování MeSH
- chromony farmakologie MeSH
- fibroblastový růstový faktor 2 farmakologie MeSH
- imunohistochemie MeSH
- lidé MeSH
- lidské embryonální kmenové buňky cytologie metabolismus MeSH
- malá interferující RNA metabolismus MeSH
- membránové proteiny metabolismus MeSH
- morfoliny farmakologie MeSH
- nervové kmenové buňky cytologie metabolismus MeSH
- neurogeneze účinky léků MeSH
- neurony cytologie metabolismus MeSH
- protein zonula occludens 1 antagonisté a inhibitory genetika metabolismus MeSH
- proteiny asociované s mikrotubuly metabolismus MeSH
- proteiny nervové tkáně metabolismus MeSH
- pyrimidiny farmakologie MeSH
- receptor fibroblastových růstových faktorů, typ 1 metabolismus MeSH
- RNA interference MeSH
- signální transdukce účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Major programs in psychiatric genetics have identified >150 risk loci for psychiatric disorders. These loci converge on a small number of functional pathways, which span conventional diagnostic criteria, suggesting a partly common biology underlying schizophrenia, autism and other psychiatric disorders. Nevertheless, the cellular phenotypes that capture the fundamental features of psychiatric disorders have not yet been determined. Recent advances in genetics and stem cell biology offer new prospects for cell-based modeling of psychiatric disorders. The advent of cell reprogramming and induced pluripotent stem cells (iPSC) provides an opportunity to translate genetic findings into patient-specific in vitro models. iPSC technology is less than a decade old but holds great promise for bridging the gaps between patients, genetics and biology. Despite many obvious advantages, iPSC studies still present multiple challenges. In this expert review, we critically review the challenges for modeling of psychiatric disorders, potential solutions and how iPSC technology can be used to develop an analytical framework for the evaluation and therapeutic manipulation of fundamental disease processes.
- MeSH
- autistická porucha metabolismus MeSH
- biologické modely * MeSH
- duševní poruchy genetika metabolismus MeSH
- genomika MeSH
- indukované pluripotentní kmenové buňky metabolismus MeSH
- lidé MeSH
- přeprogramování buněk MeSH
- schizofrenie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Abnormalities in both time processing and dopamine (DA) neurotransmission have been observed in schizophrenia. Time processing seems to be linked to DA neurotransmission. The cognitive dysmetria hypothesis postulates that psychosis might be a manifestation of the loss of coordination of mental processes due to impaired timing. The objective of the present study was to analyze timing abilities and their corresponding functional neuroanatomy in schizophrenia. We performed a functional magnetic resonance imaging (fMRI) study using a predictive motor timing paradigm in 28 schizophrenia patients and 27 matched healthy controls (HC). The schizophrenia patients showed accelerated time processing compared to HC; the amount of the acceleration positively correlated with the degree of positive psychotic symptoms and negatively correlated with antipsychotic dose. This dysfunctional predictive timing was associated with BOLD signal activity alterations in several brain networks, especially those previously described as timing networks (basal ganglia, cerebellum, SMA, and insula) and reward networks (hippocampus, amygdala, and NAcc). BOLD signal activity in the cerebellar vermis was negatively associated with accelerated time processing. Several lines of evidence suggest a direct link between DA transmission and the cerebellar vermis that could explain their relevance for the neurobiology of schizophrenia.
- MeSH
- dospělí MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku MeSH
- mozek patofyziologie MeSH
- nervová síť patofyziologie MeSH
- pohybová aktivita fyziologie MeSH
- schizofrenie patofyziologie MeSH
- vermis cerebelli patofyziologie MeSH
- vnímání času fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH