"TN02000109"
Dotaz
Zobrazit nápovědu
BACKGROUND: Overexpression of human epidermal growth factor receptor type 2 (HER2) occurs in multiple carcinomas. For example, up to 20% of breast cancer cases are classified as HER2 positive (HER2+). Treatment of this condition typically involves immunotherapy using monoclonal antibodies, such as trastuzumab or pertuzumab. The precise targeting of monoclonal antibodies to HER2+ tumour lesions can be used as well in radioimmunotherapy to deliver medical radionuclides exactly to the afflicted area and therefore minimize radiation exposure of healthy tissues. In this study, DOTA conjugates of monoclonal antibodies trastuzumab and pertuzumab were prepared and tested in vitro. One of these, 225Ac-DOTA-pertuzumab, was also the subject of an ex vivo biodistribution study with normal as well as HER2+ and HER2- tumour-xenografted mice. This radioconjugate has not been previously described. RESULTS: Three DOTA-conjugates of HER2 targeting monoclonal antibodies, one of trastuzumab and two of pertuzumab, were prepared and radiolabelled with 225Ac in different molar ratios. This procedure led to an optimisation of the preparation and radiolabelling process. The radioconjugates were shown to be highly stable in vitro in both fetal bovine serum and phosphate buffered saline under room temperature and decreased temperature for 10 days. In vitro cell studies with HER2-overexpressing cell-line (SKOV-3) and low HER2-expressing cell line (MDA-MB-231) proved that radioconjugates of both antibodies have high binding specificity and affinity towards HER2 receptors. These findings were confirmed for a novel radioconjugate 225Ac-DOTA-pertuzumab in an ex vivo biodistribution study, where uptake in HER2+ tumour was 50 ± 14% ID/g and HER2- tumour showed uptake comparable with healthy tissues (max. 5.0 ± 1.7% ID/g). The high uptake observed in the spleen can be attributed to the elimination of the antibody, as well as the use of an immunedeficient mouse strain (SCID). CONCLUSIONS: During this study, the optimization of preparation and radiolabelling of HER2 targeting antibodies with 225Ac was accomplished. Furthermore, the radioconjugate 225Ac-DOTA-pertuzumab was prepared and evaluated for the first time. The radioconjugates of both tested antibodies demonstrated excellent qualities in terms of stability and HER2 receptor affinity. Initial ex vivo studies indicated that especially the radioconjugate 225Ac-DOTA-pertuzumab is a very promising candidate for further more detailed in vivo studies.
- Publikační typ
- časopisecké články MeSH
Alzheimer's disease (AD) is the most common form of dementia. Characterized by progressive neurodegeneration, AD typically begins with mild cognitive decline escalating to severe impairment in communication and responsiveness. It primarily affects cerebral regions responsible for cognition, memory, and language processing, significantly impeding the functional independence of patients. With nearly 50 million dementia cases worldwide, a number expected to triple by 2050, the need for effective treatments is more urgent than ever. Recent insights into the association between obesity, type 2 diabetes mellitus, and neurodegenerative disorders have led to the development of promising treatments involving antidiabetic and anti-obesity agents. One such novel promising candidate for addressing AD pathology is a lipidized analogue of anorexigenic peptide called prolactin-releasing peptide (palm11-PrRP31). Interestingly, anorexigenic and orexigenic peptides have opposite effects on food intake regulation, however, both types exhibit neuroprotective properties. Recent studies have also identified ghrelin, an orexigenic peptide, as a potential neuroprotective agent. Hence, we employed both anorexigenic and orexigenic compounds to investigate the common mechanisms underpinning their neuroprotective effects in a triple transgenic mouse model of AD (3xTg-AD mouse model) combining amyloid-beta (Aβ) pathology and Tau pathology, two hallmarks of AD. We treated 3xTg-AD mice for 4 months with two stable lipidized anorexigenic peptide analogues - palm11-PrRP31, and liraglutide, a glucagon-like peptide 1 (GLP-1) analogue - as well as Dpr3-ghrelin, a stable analogue of the orexigenic peptide ghrelin, and using the method of immunohistochemistry and western blot demonstrate the effects of these compounds on the development of AD-like pathology in the brain. Palm11-PrRP31, Dpr3-ghrelin, and liraglutide reduced intraneuronal deposits of Aβ plaque load in the hippocampi and amygdalae of 3xTg-AD mice. Palm11-PrRP31 and Dpr3-ghrelin reduced microgliosis in the hippocampi, amygdalae, and cortices of 3xTg-AD mice. Palm11-PrRP31 and liraglutide reduced astrocytosis in the amygdalae of 3xTg-AD mice. We propose that these peptides are involved in reducing inflammation, a common mechanism underlying their therapeutic effects. This is the first study to demonstrate improvements in AD pathology following the administration of both orexigenic and anorexigenic compounds, highlighting the therapeutic potential of food intake-regulating peptides in neurodegenerative disorders.
- MeSH
- Alzheimerova nemoc * farmakoterapie metabolismus patologie MeSH
- amyloidní beta-protein metabolismus MeSH
- amyloidový prekurzorový protein beta genetika metabolismus MeSH
- ghrelin farmakologie analogy a deriváty terapeutické užití metabolismus MeSH
- hormon uvolňující prolaktin * analogy a deriváty farmakologie MeSH
- lidé MeSH
- liraglutid farmakologie terapeutické užití MeSH
- modely nemocí na zvířatech * MeSH
- myši inbrední C57BL MeSH
- myši transgenní * MeSH
- myši MeSH
- neuroprotektivní látky farmakologie terapeutické užití MeSH
- neurozánětlivé nemoci farmakoterapie metabolismus MeSH
- presenilin-1 genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A simple, sensitive and quick HPLC method was developed for the determination of ketoprofen in cell culture media (EMEM, DMEM, RPMI). Separation was performed using a gradient on the C18 column with a mobile phase of acetonitrile and miliQ water acidified by 0.1 % (v/v) formic acid. The method was validated for parameters including linearity, accuracy, precision, limit of quantitation and limit of detection, as well as robustness. The response was found linear over the range of 3-100 μg/mL as demonstrated by the acquired value of correlation coefficient R2=0.9997. The described method is applicable for determination of various pharmacokinetic aspects of ketoprofen in vitro.
Tunnels in enzymes with buried active sites are key structural features allowing the entry of substrates and the release of products, thus contributing to the catalytic efficiency. Targeting the bottlenecks of protein tunnels is also a powerful protein engineering strategy. However, the identification of functional tunnels in multiple protein structures is a non-trivial task that can only be addressed computationally. We present a pipeline integrating automated structural analysis with an in-house machine-learning predictor for the annotation of protein pockets, followed by the calculation of the energetics of ligand transport via biochemically relevant tunnels. A thorough validation using eight distinct molecular systems revealed that CaverDock analysis of ligand un/binding is on par with time-consuming molecular dynamics simulations, but much faster. The optimized and validated pipeline was applied to annotate more than 17,000 cognate enzyme-ligand complexes. Analysis of ligand un/binding energetics indicates that the top priority tunnel has the most favourable energies in 75% of cases. Moreover, energy profiles of cognate ligands revealed that a simple geometry analysis can correctly identify tunnel bottlenecks only in 50% of cases. Our study provides essential information for the interpretation of results from tunnel calculation and energy profiling in mechanistic enzymology and protein engineering. We formulated several simple rules allowing identification of biochemically relevant tunnels based on the binding pockets, tunnel geometry, and ligand transport energy profiles.Scientific contributionsThe pipeline introduced in this work allows for the detailed analysis of a large set of protein-ligand complexes, focusing on transport pathways. We are introducing a novel predictor for determining the relevance of binding pockets for tunnel calculation. For the first time in the field, we present a high-throughput energetic analysis of ligand binding and unbinding, showing that approximate methods for these simulations can identify additional mutagenesis hotspots in enzymes compared to purely geometrical methods. The predictor is included in the supplementary material and can also be accessed at https://github.com/Faranehhad/Large-Scale-Pocket-Tunnel-Annotation.git . The tunnel data calculated in this study has been made publicly available as part of the ChannelsDB 2.0 database, accessible at https://channelsdb2.biodata.ceitec.cz/ .
- Publikační typ
- časopisecké články MeSH
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.
- MeSH
- Alzheimerova nemoc farmakoterapie metabolismus patologie prevence a kontrola MeSH
- hypothalamus účinky léků metabolismus patologie MeSH
- látky proti obezitě * farmakologie terapeutické užití MeSH
- lidé MeSH
- mozek účinky léků metabolismus patologie MeSH
- neurodegenerativní nemoci farmakoterapie metabolismus prevence a kontrola MeSH
- neuropeptidy * metabolismus farmakologie terapeutické užití MeSH
- neuroprotektivní látky * farmakologie terapeutické užití MeSH
- obezita * farmakoterapie metabolismus MeSH
- přijímání potravy účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Neurodegenerative disease (ND) incidence has recently increased due to improved life expectancy. Alzheimer's (AD) or Parkinson's disease (PD) are the most prevalent NDs. Both diseases are poly genetic, multifactorial and heterogenous. Preventive medicine, a healthy diet, exercise, and controlling comorbidities may delay the onset. After the diseases are diagnosed, therapy is needed to slow progression. Recent studies show that local, peripheral and age-related inflammation accelerates NDs' onset and progression. Patients with autoimmune disorders like inflammatory bowel disease (IBD) could be at higher risk of developing AD or PD. However, no increase in ND incidence has been reported if the patients are adequately diagnosed and treated. Autoantibodies against abnormal tau, β amyloid and α- synuclein have been encountered in AD and PD and may be protective. This discovery led to the proposal of immune-based therapies for AD and PD involving monoclonal antibodies, immunization/ vaccines, pro-inflammatory cytokine inhibition and anti-inflammatory cytokine addition. All the different approaches have been analysed here. Future perspectives on new therapeutic strategies for both disorders are concisely examined.
Immune checkpoints regulate the immune system response. Recent studies suggest that flavonoids, known as phytoestrogens, may inhibit the PD-1/PD-L1 axis. We explored the potential of estrogens and 17 Selective Estrogen Receptor Modulators (SERMs) as inhibiting ligands for immune checkpoint proteins (CTLA-4, PD-L1, PD-1, and CD80). Our docking studies revealed strong binding energy values for quinestrol, quercetin, and bazedoxifene, indicating their potential to inhibit PD-1 and CTLA-4. Quercetin and bazedoxifene, known to modulate EGFR and IL-6R alongside estrogen receptors, can influence the immune checkpoint functionality. We discuss the impact of SERMs on PD-1 and CTLA-4, suggesting that these SERMs could have therapeutic effects through immune checkpoint inhibition. This study highlights the potential of SERMs as inhibitory ligands for immune checkpoint proteins, emphasizing the importance of considering PD-1 and CTLA-4 inhibition when evaluating SERMs as therapeutic agents. Our findings open new avenues for cancer immunotherapy by exploring the interaction between various SERMs and immune checkpoint pathways.
- MeSH
- antigen CTLA-4 MeSH
- antigeny CD274 MeSH
- antigeny CD279 MeSH
- imunoterapie MeSH
- lidé MeSH
- modulátory estrogenních receptorů MeSH
- nádory * terapie MeSH
- proteiny kontrolních bodů imunitní reakce * MeSH
- quercetin MeSH
- selektivní modulátory estrogenních receptorů farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
N-methyl-D-aspartate receptors (NMDARs) play a critical role in normal brain function, and variants in genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. We have used whole-cell patch-clamp electrophysiology, fluorescence microscopy and in-silico modeling to explore the functional consequences of disease-associated nonsense and frame-shift variants resulting in the truncation of GluN2A or GluN2B C-terminal domain (CTD). This study characterizes variant NMDARs and shows their reduced surface expression and synaptic localization, altered agonist affinity, increased desensitization, and reduced probability of channel opening. We also show that naturally occurring and synthetic steroids pregnenolone sulfate and epipregnanolone butanoic acid, respectively, enhance NMDAR function in a way that is dependent on the length of the truncated CTD and, further, is steroid-specific, GluN2A/B subunit-specific, and GluN1 splice variant-specific. Adding to the previously described effects of disease-associated NMDAR variants on the receptor biogenesis and function, our results improve the understanding of the molecular consequences of NMDAR CTD truncations and provide an opportunity for the development of new therapeutic neurosteroid-based ligands.
- MeSH
- elektrofyziologické jevy MeSH
- lidé MeSH
- neurosteroidy * MeSH
- receptory N-methyl-D-aspartátu * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
As the world population ages, there will be an increasing need for effective therapies for aging-associated neurodegenerative disorders, which remain untreatable. Dementia due to Alzheimer's disease (AD) is one of the leading neurological diseases in the aging population. Current therapeutic approaches to treat this disorder are solely symptomatic, making the need for new molecular entities acting on the causes of the disease extremely urgent. One of the potential solutions is to use compounds that are already in the market. The structures have known pharmacokinetics, pharmacodynamics, toxicity profiles, and patient data available in several countries. Several drugs have been used successfully to treat diseases different from their original purposes, such as autoimmunity and peripheral inflammation. Herein, we divulge the repurposing of drugs in the area of neurodegenerative diseases, focusing on the therapeutic potential of antineoplastics to treat dementia due to AD and dementia. We briefly touch upon the shared pathological mechanism between AD and cancer and drug repurposing strategies, with a focus on artificial intelligence. Next, we bring out the current status of research on the development of drugs, provide supporting evidence from retrospective, clinical, and preclinical studies on antineoplastic use, and bring in new areas, such as repurposing drugs for the prion-like spreading of pathologies in treating AD.
- MeSH
- Alzheimerova nemoc * farmakoterapie MeSH
- demence * farmakoterapie MeSH
- lidé MeSH
- pozorovací studie jako téma MeSH
- přehodnocení terapeutických indikací léčivého přípravku * MeSH
- preklinické hodnocení léčiv MeSH
- protinádorové látky * farmakologie terapeutické užití chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH