(p)ppGpp Dotaz Zobrazit nápovědu
Pro přežití výkyvů vnějších podmínek bakterie vyvinuly stresové adaptační mechanismy, ke kterým patří i stringentní odpověď, která je řízena hladinou nukleotidové signální molekuly (p)ppGpp. Klíčovými regulátory tohoto procesu jsou multifunkční enzymy Rel a RelA/SpoT z rodiny proteinů RSH. Přestože jsou komponenty a funkce stringentní odpovědi u bakterií vysoce konzervované, mohou se u některých bakterií konkrétní molekulární mechanismy regulace značně lišit. Stringentní odpověď a její komponenty ovlivňují celou řadu buněčných pochodů a představují tak potenciální cíle pro vývoj nových typů léčiv proti infekcím způsobených rezistentními bakteriálními patogeny.
To survive fluctuations of the environmental conditions, the bacteria have evolved stress response mechanisms, such as the stringent response, which is controlled by the changes of intracellular signal molecule (p)ppGpp levels. The key regulators of this process are the multifunctional enzymes Rel and RelA/SpoT of the RSH protein family. Components and functions of the stringent response are highly conserved throughout the bacterial domain, yet the particular molecular mechanisms of its regulation can differ strongly between species. Stringent response and its components play a role in the whole spectrum of cellular functions and represent a potential target for development of novel drugs against infections caused by resistant bacterial pathogens.
The alarmone (p)ppGpp plays pivotal roles in basic bacterial stress responses by increasing tolerance of various nutritional limitations and chemical insults, including antibiotics. Despite intensive studies since (p)ppGpp was discovered over 4 decades ago, (p)ppGpp binding proteins have not been systematically identified in Escherichia coli We applied DRaCALA (differential radial capillary action of ligand assay) to identify (p)ppGpp-protein interactions. We discovered 12 new (p)ppGpp targets in E. coli that, based on their physiological functions, could be classified into four major groups, involved in (i) purine nucleotide homeostasis (YgdH), (ii) ribosome biogenesis and translation (RsgA, Era, HflX, and LepA), (iii) maturation of dehydrogenases (HypB), and (iv) metabolism of (p)ppGpp (MutT, NudG, TrmE, NadR, PhoA, and UshA). We present a comprehensive and comparative biochemical and physiological characterization of these novel (p)ppGpp targets together with a comparative analysis of relevant, known (p)ppGpp binding proteins. Via this, primary targets of (p)ppGpp in E. coli are identified. The GTP salvage biosynthesis pathway and ribosome biogenesis and translation are confirmed as targets of (p)ppGpp that are highly conserved between E. coli and Firmicutes In addition, an alternative (p)ppGpp degradative pathway, involving NudG and MutT, was uncovered. This report thus significantly expands the known cohort of (p)ppGpp targets in E. coliIMPORTANCE Antibiotic resistance and tolerance exhibited by pathogenic bacteria have resulted in a global public health crisis. Remarkably, almost all bacterial pathogens require the alarmone (p)ppGpp to be virulent. Thus, (p)ppGpp not only induces tolerance of nutritional limitations and chemical insults, including antibiotics, but is also often required for induction of virulence genes. However, understanding of the molecular targets of (p)ppGpp and the mechanisms by which (p)ppGpp influences bacterial physiology is incomplete. In this study, a systematic approach was used to uncover novel targets of (p)ppGpp in E. coli, the best-studied model bacterium. Comprehensive comparative studies of the targets revealed conserved target pathways of (p)ppGpp in both Gram-positive and -negative bacteria and novel targets of (p)ppGpp, including an alternative degradative pathway of (p)ppGpp. Thus, our discoveries may help in understanding of how (p)ppGpp increases the stress resilience and multidrug tolerance not only of the model organism E. coli but also of the pathogenic organisms in which these targets are conserved.
The stringent response enables bacteria to respond to nutrient limitation and other stress conditions through production of the nucleotide-based second messengers ppGpp and pppGpp, collectively known as (p)ppGpp. Here, we report that (p)ppGpp inhibits the signal recognition particle (SRP)-dependent protein targeting pathway, which is essential for membrane protein biogenesis and protein secretion. More specifically, (p)ppGpp binds to the SRP GTPases Ffh and FtsY, and inhibits the formation of the SRP receptor-targeting complex, which is central for the coordinated binding of the translating ribosome to the SecYEG translocon. Cryo-EM analysis of SRP bound to translating ribosomes suggests that (p)ppGpp may induce a distinct conformational stabilization of the NG domain of Ffh and FtsY in Bacillus subtilis but not in E. coli.
- MeSH
- bakteriální proteiny metabolismus MeSH
- Escherichia coli metabolismus MeSH
- guanosinpentafosfát metabolismus MeSH
- proteiny z Escherichia coli * metabolismus MeSH
- receptory cytoplazmatické a nukleární metabolismus MeSH
- signál-rozpoznávající částice * metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
UNLABELLED: The bacterial stringent response (SR) is a conserved stress tolerance mechanism that orchestrates physiological alterations to enhance cell survival. This response is mediated by the intracellular accumulation of the alarmones pppGpp and ppGpp, collectively called (p)ppGpp. In Enterococcus faecalis, (p)ppGpp metabolism is carried out by the bifunctional synthetase/hydrolase E. faecalis Rel (RelEf) and the small alarmone synthetase (SAS) RelQEf. Although Rel is the main enzyme responsible for SR activation in Firmicutes, there is emerging evidence that SASs can make important contributions to bacterial homeostasis. Here, we showed that RelQEf synthesizes ppGpp more efficiently than pppGpp without the need for ribosomes, tRNA, or mRNA. In addition to (p)ppGpp synthesis from GDP and GTP, RelQEf also efficiently utilized GMP to form GMP 3'-diphosphate (pGpp). Based on this observation, we sought to determine if pGpp exerts regulatory effects on cellular processes affected by (p)ppGpp. We found that pGpp, like (p)ppGpp, strongly inhibits the activity of E. faecalis enzymes involved in GTP biosynthesis and, to a lesser extent, transcription of rrnB by Escherichia coli RNA polymerase. Activation of E. coli RelA synthetase activity was observed in the presence of both pGpp and ppGpp, while RelQEf was activated only by ppGpp. Furthermore, enzymatic activity of RelQEf is insensitive to relacin, a (p)ppGpp analog developed as an inhibitor of "long" RelA/SpoT homolog (RSH) enzymes. We conclude that pGpp can likely function as a bacterial alarmone with target-specific regulatory effects that are similar to what has been observed for (p)ppGpp. IMPORTANCE: Accumulation of the nucleotide second messengers (p)ppGpp in bacteria is an important signal regulating genetic and physiological networks contributing to stress tolerance, antibiotic persistence, and virulence. Understanding the function and regulation of the enzymes involved in (p)ppGpp turnover is therefore critical for designing strategies to eliminate the protective effects of this molecule. While characterizing the (p)ppGpp synthetase RelQ of Enterococcus faecalis (RelQEf), we found that, in addition to (p)ppGpp, RelQEf is an efficient producer of pGpp (GMP 3'-diphosphate). In vitro analysis revealed that pGpp exerts complex, target-specific effects on processes known to be modulated by (p)ppGpp. These findings provide a new regulatory feature of RelQEf and suggest that pGpp may represent a new member of the (pp)pGpp family of alarmones.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- deoxyguanosin analogy a deriváty biosyntéza chemie MeSH
- dipeptidy biosyntéza chemie MeSH
- Enterococcus faecalis účinky léků enzymologie genetika metabolismus MeSH
- fyziologický stres MeSH
- guanosindifosfát metabolismus MeSH
- guanosinpentafosfát metabolismus MeSH
- guanosintetrafosfát biosyntéza MeSH
- guanosintrifosfát metabolismus MeSH
- hořčík MeSH
- ligasy genetika metabolismus MeSH
- molekulární struktura MeSH
- regulace genové exprese enzymů MeSH
- regulace genové exprese u bakterií MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The alarmone nucleotide (p)ppGpp is a key regulator of bacterial metabolism, growth, stress tolerance and virulence, making (p)ppGpp-mediated signaling a promising target for development of antibacterials. Although ppGpp itself is an activator of the ribosome-associated ppGpp synthetase RelA, several ppGpp mimics have been developed as RelA inhibitors. However promising, the currently available ppGpp mimics are relatively inefficient, with IC50 in the sub-mM range. In an attempt to identify a potent and specific inhibitor of RelA capable of abrogating (p)ppGpp production in live bacterial cells, we have tested a targeted nucleotide library using a biochemical test system comprised of purified Escherichia coli components. While none of the compounds fulfilled this aim, the screen has yielded several potentially useful molecular tools for biochemical and structural work.
While alarmone nucleotides guanosine-3',5'-bisdiphosphate (ppGpp) and guanosine-5'-triphosphate-3'-diphosphate (pppGpp) are archetypical bacterial second messengers, their adenosine analogues ppApp (adenosine-3',5'-bisdiphosphate) and pppApp (adenosine-5'-triphosphate-3'-diphosphate) are toxic effectors that abrogate bacterial growth. The alarmones are both synthesized and degraded by the members of the RelA-SpoT Homologue (RSH) enzyme family. Because of the chemical and enzymatic liability of (p)ppGpp and (p)ppApp, these alarmones are prone to degradation during structural biology experiments. To overcome this limitation, we have established an efficient and straightforward procedure for synthesizing nonhydrolysable (p)ppNuNpp analogues starting from 3'-azido-3'-deoxyribonucleotides as key intermediates. To demonstrate the utility of (p)ppGNpp as a molecular tool, we show that (i) as an HD substrate mimic, ppGNpp competes with ppGpp to inhibit the enzymatic activity of human MESH1 Small Alarmone Hyrolase, SAH; and (ii) mimicking the allosteric effects of (p)ppGpp, (p)ppGNpp acts as a positive regulator of the synthetase activity of long ribosome-associated RSHs Rel and RelA. Finally, by solving the structure of the N-terminal domain region (NTD) of T. thermophilus Rel complexed with pppGNpp, we show that as an HD substrate mimic, the analogue serves as a bona fide orthosteric regulator that promotes the same intra-NTD structural rearrangements as the native substrate.
- MeSH
- adeninnukleotidy chemická syntéza metabolismus MeSH
- alosterické místo MeSH
- Bacillus subtilis MeSH
- bakteriální proteiny metabolismus MeSH
- deoxyribonukleotidy MeSH
- Escherichia coli MeSH
- konformace proteinů MeSH
- ligasy metabolismus MeSH
- pyrofosfatasy metabolismus MeSH
- regulace genové exprese u bakterií účinky léků MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Bacillus subtilis cells are well suited to study how bacteria sense and adapt to proteotoxic stress such as heat, since temperature fluctuations are a major challenge to soil-dwelling bacteria. Here, we show that the alarmones (p)ppGpp, well known second messengers of nutrient starvation, are also involved in the heat stress response as well as the development of thermo-resistance. Upon heat-shock, intracellular levels of (p)ppGpp rise in a rapid but transient manner. The heat-induced (p)ppGpp is primarily produced by the ribosome-associated alarmone synthetase Rel, while the small alarmone synthetases RelP and RelQ seem not to be involved. Furthermore, our study shows that the generated (p)ppGpp pulse primarily acts at the level of translation, and only specific genes are regulated at the transcriptional level. These include the down-regulation of some translation-related genes and the up-regulation of hpf, encoding the ribosome-protecting hibernation-promoting factor. In addition, the alarmones appear to interact with the activity of the stress transcription factor Spx during heat stress. Taken together, our study suggests that (p)ppGpp modulates the translational capacity at elevated temperatures and thereby allows B. subtilis cells to respond to proteotoxic stress, not only by raising the cellular repair capacity, but also by decreasing translation to concurrently reduce the protein load on the cellular protein quality control system.
Under stressful conditions, bacterial RelA-SpoT Homolog (RSH) enzymes synthesize the alarmone (p)ppGpp, a nucleotide second messenger. (p)ppGpp rewires bacterial transcription and metabolism to cope with stress, and, at high concentrations, inhibits the process of protein synthesis and bacterial growth to save and redirect resources until conditions improve. Single-domain small alarmone synthetases (SASs) are RSH family members that contain the (p)ppGpp synthesis (SYNTH) domain, but lack the hydrolysis (HD) domain and regulatory C-terminal domains of the long RSHs such as Rel, RelA, and SpoT. We asked whether analysis of the genomic context of SASs can indicate possible functional roles. Indeed, multiple SAS subfamilies are encoded in widespread conserved bicistronic operon architectures that are reminiscent of those typically seen in toxin-antitoxin (TA) operons. We have validated five of these SASs as being toxic (toxSASs), with neutralization by the protein products of six neighboring antitoxin genes. The toxicity of Cellulomonas marina toxSAS FaRel is mediated by the accumulation of alarmones ppGpp and ppApp, and an associated depletion of cellular guanosine triphosphate and adenosine triphosphate pools, and is counteracted by its HD domain-containing antitoxin. Thus, the ToxSAS-antiToxSAS system with its multiple different antitoxins exemplifies how ancient nucleotide-based signaling mechanisms can be repurposed as TA modules during evolution, potentially multiple times independently.
- MeSH
- adeninnukleotidy metabolismus MeSH
- Bacteria růst a vývoj metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- databáze genetické MeSH
- fyziologický stres fyziologie MeSH
- guanosinpentafosfát metabolismus MeSH
- guanosintetrafosfát metabolismus MeSH
- guanosintrifosfát metabolismus MeSH
- ligasy metabolismus MeSH
- pyrofosfatasy metabolismus MeSH
- regulace genové exprese u bakterií genetika MeSH
- signální transdukce MeSH
- systémy toxin-antitoxin fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The nucleotide (p)ppGpp is a key regulator of bacterial metabolism, growth, stress tolerance, and virulence. During amino acid starvation, the Escherichia coli (p)ppGpp synthetase RelA is activated by deacylated tRNA in the ribosomal A-site. An increase in (p)ppGpp is believed to drive the formation of antibiotic-tolerant persister cells, prompting the development of strategies to inhibit (p)ppGpp synthesis. We show that in a biochemical system from purified E. coli components, the antibiotic thiostrepton efficiently inhibits RelA activation by the A-site tRNA. In bacterial cultures, the ribosomal inhibitors thiostrepton, chloramphenicol, and tetracycline all efficiently abolish accumulation of (p)ppGpp induced by the Ile-tRNA synthetase inhibitor mupirocin. This abolishment, however, does not reduce the persister level. In contrast, the combination of dihydrofolate reductase inhibitor trimethoprim with mupirocin, tetracycline, or chloramphenicol leads to ampicillin tolerance. The effect is independent of RelA functionality, specific to β-lactams, and not observed with the fluoroquinolone norfloxacin. These results refine our understanding of (p)ppGpp's role in antibiotic tolerance and persistence and demonstrate unexpected drug interactions that lead to tolerance to bactericidal antibiotics.
- MeSH
- antibakteriální látky farmakologie MeSH
- beta-laktamy farmakologie MeSH
- chloramfenikol farmakologie MeSH
- dihydrofolátreduktasa genetika metabolismus MeSH
- Escherichia coli chemie genetika metabolismus MeSH
- guanosintetrafosfát analogy a deriváty metabolismus MeSH
- isoleucin-tRNA-ligasa genetika MeSH
- lékové interakce MeSH
- ligasy antagonisté a inhibitory genetika metabolismus MeSH
- mupirocin farmakologie MeSH
- proteosyntéza účinky léků MeSH
- ribozomy účinky léků metabolismus MeSH
- RNA transferová genetika metabolismus MeSH
- subcelulární frakce chemie účinky léků metabolismus MeSH
- tetracyklin farmakologie MeSH
- thiostrepton farmakologie MeSH
- tolerance léku * MeSH
- trimethoprim farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
RelA-SpoT Homolog (RSH) enzymes control bacterial physiology through synthesis and degradation of the nucleotide alarmone (p)ppGpp. We recently discovered multiple families of small alarmone synthetase (SAS) RSH acting as toxins of toxin-antitoxin (TA) modules, with the FaRel subfamily of toxSAS abrogating bacterial growth by producing an analog of (p)ppGpp, (pp)pApp. Here we probe the mechanism of growth arrest used by four experimentally unexplored subfamilies of toxSAS: FaRel2, PhRel, PhRel2, and CapRel. Surprisingly, all these toxins specifically inhibit protein synthesis. To do so, they transfer a pyrophosphate moiety from ATP to the tRNA 3' CCA. The modification inhibits both tRNA aminoacylation and the sensing of cellular amino acid starvation by the ribosome-associated RSH RelA. Conversely, we show that some small alarmone hydrolase (SAH) RSH enzymes can reverse the pyrophosphorylation of tRNA to counter the growth inhibition by toxSAS. Collectively, we establish RSHs as RNA-modifying enzymes.
- MeSH
- bakteriální toxiny genetika metabolismus farmakologie MeSH
- fosforylace účinky léků MeSH
- grampozitivní nesporulující tyčinky chemie metabolismus MeSH
- guanosinpentafosfát chemie metabolismus MeSH
- inhibitory syntézy proteinů farmakologie MeSH
- ligasy chemie genetika metabolismus MeSH
- proteosyntéza účinky léků fyziologie MeSH
- pyrofosfatasy MeSH
- ribozomy metabolismus MeSH
- RNA transferová metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH