3′UTR polymorphisms
Dotaz
Zobrazit nápovědu
The TRPS1 protein is a potent regulator of proliferation, differentiation, and apoptosis. The TRPS1 gene aberrations are strongly associated with rare trichorhinophalangeal syndrome (TRPS) development. We have conducted MLPA analysis to capture deletion within the crucial 8q24.1 chromosomal region in combination with mutation analysis of TRPS1 gene including core promoter, 5'UTR, and 3'UTR sequences in nine TRPS patients. Low complexity or extent of untranslated regulatory sequences avoided them from analysis in previous studies. Amplicon based next generation sequencing used in our study bridge over these technical limitations. Finally, we have made extended in silico analysis of TRPS1 gene regulatory sequences organization. Single contiguous deletion and an intragenic deletion intervening several exons were detected. Mutation analysis revealed five TRPS1 gene aberrations (two structural rearrangements, two nonsense mutations, and one missense substitution) reaching the overall detection rate of 78%. Several polymorphic variants were detected within the analysed regulatory sequences but without proposed pathogenic effect. In silico analysis suggested alternative promoter usage and diverse expression effectivity for different TRPS1 transcripts. Haploinsufficiency of TRPS1 gene was responsible for most of the TRPS phenotype. Structure of TRPS1 gene regulatory sequences is indicative of generally low single allele expression and its tight control.
- MeSH
- 3' nepřekládaná oblast genetika MeSH
- 5' nepřekládaná oblast genetika MeSH
- dítě MeSH
- DNA vazebné proteiny chemie genetika MeSH
- dospělí MeSH
- haploinsuficience MeSH
- Langerův-Giedionův syndrom genetika MeSH
- lidé MeSH
- mladý dospělý MeSH
- mutační analýza DNA * MeSH
- předškolní dítě MeSH
- promotorové oblasti (genetika) genetika MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- transkripční faktory chemie genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
MicroRNAs (miRNAs) are small non-coding RNAs, which regulate gene expression. Single nucleotide polymorphisms (SNPs) may occur in miRNA biogenesis pathway genes, primary miRNA, pre-miRNA or a mature miRNA sequence. Such polymorphisms may be functional with respect to biogenesis and actions of mature miRNA. Specific SNPs were identified in predicted miRNA target sites within 3' untranslated regions of mRNAs. These SNPs have a potential to affect the efficiency of miRNA binding to the target sites or can create or disrupt binding sites. Resulting gene dysregulation may involve changes in phenotype and may eventually prove critical for the susceptibility to cancer and its onset as well as for estimates of prognosis and therapy response. In this review, we provide a comprehensive list of potentially functional miRNA-related SNPs and summarize their importance as candidate cancer biomarkers.
- MeSH
- 3' nepřekládaná oblast MeSH
- genetická predispozice k nemoci MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- mikro RNA genetika metabolismus MeSH
- molekulární epidemiologie metody MeSH
- nádory genetika patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Reduced DNA repair capacity and DNA damage accumulation may lead to cancer development. Regulation of and coordination between genes involved in DNA repair pathways is fundamental for maintaining genome stability, and post-transcriptional gene regulation by microRNAs (miRNAs) may therefore be of particular relevance. In this context, the presence of single nucleotide polymorphisms (SNPs) within the 3'untranslated regions of target DNA repair genes could alter the binding with specific miRNAs, modulating gene expression and ultimately affecting cancer susceptibility. In this study, we investigated the role of genetic variations in miRNA-binding sites of nucleotide excision repair (NER) genes in association with colorectal cancer (CRC) risk. From 28 NER genes, we screened among SNPs residing in their 3'untranslated regions and simultaneously located in miRNA-binding sites, with an in silico approach. Through the calculation of different binding free energy according to both alleles of identified SNPs, and with global binding free energies median providing a threshold, we selected nine NER gene variants. We tested those SNPs in 1098 colorectal cancer cases and 1469 healthy controls from the Czech Republic. Rs7356 in RPA2 and rs4596 in GTF2H1 were associated with colorectal cancer risk. After stratification for tumor location, the association of both SNPs was significant only for rectal cancer (rs7356: OR 1.52, 95% CI 1.02-2.26, P = 0.04 and rs4596: OR 0.69, 95% CI 0.50-0.94, P = 0.02; results not adjusted for multiple testing). Variation in miRNA target binding sites in the 3'untranslated region of NER genes may be important for modulating colorectal cancer risk, with a different relevance according to tumor location.
Angiotensinogen (AGT) represents a key component of the renin-angiotensin-aldosterone system (RAAS). Polymorphisms in the 3' untranslated region (3'UTR) of the AGT gene may alter miRNA binding and cause disbalance in the RAAS. Within this study, we evaluated the possible association of AGT +11525C/A (rs7079) with the clinical characteristics of patients with coronary artery diseases (CAD). Selective coronarography was performed in 652 consecutive CAD patients. Clinical characteristics of the patients, together with peripheral blood samples for DNA isolation, were collected. The genotyping of rs7079 polymorphism was performed with TaqMan® SNP Genotyping Assays. We observed that patients with the CC genotype were referred for coronarography at a younger age compared to those with the AA+CA genotypes (CC vs. AA+CA: 59.1 ± 9.64 vs. 60.91 ± 9.5 (years), p = 0.045). Moreover, according to the logistic regression model, patients with the CC genotype presented more often with restenosis than those with the CA genotype (p = 0.0081). In conclusion, CC homozygotes for rs7079 present with CAD symptoms at a younger age compared with those with the AA+CA genotype, and they are more prone to present with restenosis compared with heterozygotes.
Genetic variations in miRNAs binding site might participate in cancer risk. This study aimed to systematically review the association between miRNA-binding site polymorphisms and colorectal cancer (CRC). Electronic literature search was carried out on PubMed, Web of Science (WOS), Scopus, and Embase. All types of observational studies till 30 November 2018 were included. Overall 85 studies (21 SNPs) from two systematic searches were included analysis. The results showed that in the Middle East population, the minor allele of rs731236 was associated with decreased risk of CRC (heterozygote model: 0.76 [0.61-0.95]). The minor allele of rs3025039 was related to increased risk of CRC in East Asian population (allelic model: 1.25 [1.01-1.54]). Results for rs3212986 were significant in overall and subgroup analysis (P < .05). For rs1801157 in subgroup analysis the association was significant in Asian populations (including allelic model: 2.28 [1.11-4.69]). For rs712, subgroup analysis revealed a significant (allelic model: 1.41 [1.23-1.61]) and borderline (allelic model: 0.92 [0.84-1.00]) association in Chinese and Czech populations, respectively. The minor allele of rs17281995 increased risk of CRC in different genetic models (P < .05). Finally, rs5275, rs4648298, and rs61764370 did not show significant associations. In conclusion, minor allele of rs3025039, rs3212986, and rs712 polymorphisms increases the risk of CRC in the East Asian population, and heterozygote model of rs731236 polymorphism shows protective effect in the Middle East population. In Europeans, the minor allele of rs17281995 may increase the risk of CRC, while rs712 may have a protective effect. Further analysis based on population stratifications should be considered in future studies.
- MeSH
- 3' nepřekládaná oblast genetika MeSH
- alely MeSH
- Asijci genetika MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus MeSH
- kolorektální nádory epidemiologie genetika MeSH
- lidé MeSH
- mikro RNA metabolismus MeSH
- pozorovací studie jako téma MeSH
- regulace genové exprese u nádorů MeSH
- rizikové faktory MeSH
- vazebná místa genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- systematický přehled MeSH
- Geografické názvy
- Česká republika MeSH
- Dálný východ MeSH
- Střední východ MeSH
Sporadic colorectal cancer (CRC) is a typical multifactorial disease. Isothiocyanates (ITC) have been recently shown to inhibit development of CRC in many experimental models. MicroRNAs (miRNAs) are short noncoding RNAs that posttranscriptionally regulate gene expression through binding to 3' untranslated regions (3'UTR) of target mRNAs. MiRNAs are regulated by natural agents, ITCs included. In our study, using global expression profiling based on TaqMan Low-Density Arrays, we identified 3 common miRNAs (miR-155, miR-23b, miR-27b) regulated by ITCs (sulforaphane, iberin) in colonic epithelial cell lines NCM460 and NCM356. In silico predictions allowed us to find 9 relevant single nucleotide polymorphisms (SNPs) localized within the 3'UTRs of genes (AGTR1, TNFAIP2, PRKCB, HSPA9, RABGAP1, DICER1, ADAM19, VWA5A, and SIRT5) targeted by these ITC-related miRNAs. Finally, we observed that homozygous CC genotype of DICER1, rs1057035, was significantly associated with decreased risk of CRC (odds ratio = 0.49; 95% confidence interval: 0.25-0.95, P = 0.036) when compared to TT homozygote genotype; also, the C allele tended to have a protective effect (P = 0.072). This study showed that miRNAs could be involved in chemoprotective effects of natural agents; their function alteration through SNPs in their binding sites and flanking regions presents a new class of CRC risk factors.
- MeSH
- 3' nepřekládaná oblast MeSH
- buněčné linie účinky léků MeSH
- DEAD-box RNA-helikasy genetika MeSH
- epitelové buňky účinky léků patologie MeSH
- genetická predispozice k nemoci MeSH
- homozygot MeSH
- isothiokyanatany farmakologie MeSH
- jednonukleotidový polymorfismus * MeSH
- kolorektální nádory genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- ochranné látky farmakologie MeSH
- počítačová simulace MeSH
- regulace genové exprese účinky léků MeSH
- ribonukleasa III genetika MeSH
- senioři MeSH
- stanovení celkové genové exprese MeSH
- studie případů a kontrol MeSH
- vazebná místa genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- 5' nepřekládaná oblast genetika MeSH
- ledviny fyziologie MeSH
- polymorfismus genetický genetika MeSH
- potkani inbrední Dahl MeSH
- sodíkové kanály fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- kongresy MeSH
PURPOSE: Colorectal cancer is routinely treated with a 5-fluorouracil (5-FU)-based chemotherapy. 5-FU incorporates into DNA, and the base excision repair (BER) pathway specifically recognizes such damage. We investigated the association of single-nucleotide polymorphisms (SNP) in the 3'-untranslated regions (UTR) of BER genes, and potentially affecting the microRNA (miRNA) binding, on the risk of colorectal cancer, its progression, and prognosis. SNPs in miRNA-binding sites may modulate the posttranscriptional regulation of gene expression operated by miRNAs and explain interindividual variability in BER capacity and response to 5-FU. EXPERIMENTAL DESIGN: We tested 12 SNPs in the 3'-UTRs of five BER genes for colorectal cancer susceptibility in a case-control study (1,098 cases and 1,459 healthy controls). Subsequently, we analyzed the role of these SNPs on clinical outcomes of patients (866 in the Training set and 232 in the Replication set). RESULTS: SNPs in the SMUG1 and NEIL2 genes were associated with overall survival. In particular, SMUG1 rs2233921 TT carriers showed increased survival compared with those with GT/GG genotypes [HR, 0.54; 95% confidence interval (CI), 0.36-0.81; P = 0.003] in the Training set and after pooling results from the Replication set. The association was more significant following stratification for 5-FU-based chemotherapy (P = 5.6 × 10(-5)). A reduced expression of the reporter gene for the T allele of rs2233921 was observed when compared with the common G allele by in vitro assay. None of the genotyped BER polymorphisms were associated with colorectal cancer risk. CONCLUSIONS: We provide the first evidence that variations in miRNA-binding sites in BER genes 3'-UTR may modulate colorectal cancer prognosis and therapy response.
- MeSH
- 3' nepřekládaná oblast * MeSH
- dospělí MeSH
- genetická variace * MeSH
- jednonukleotidový polymorfismus MeSH
- kolorektální nádory farmakoterapie genetika mortalita MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA genetika metabolismus MeSH
- oprava DNA genetika MeSH
- prognóza MeSH
- protokoly protinádorové kombinované chemoterapie terapeutické užití MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- vazebná místa MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
According to the Vogelstein's model of colorectal carcinogenesis, genetic variations in highly penetrant genes may be involved in the colorectal cancer (CRC) pathogenesis. Similarly, aberrant function and/or altered expression of microRNAs (miRNAs) often occur in CRC. In this context, polymorphisms in miRNA-binding sites (miRSNPs) may affect miRNA/target gene interaction, resulting in differential mRNA/protein expression and increased susceptibility to common diseases. To explore this phenomenon, we have mined the 3' untranslated regions (3'UTRs) of genes known to be frequently mutated in CRC to search for miRSNPs and tested their association with CRC risk and clinical outcome. Eight miRSNPs (rs1804191, rs397768, rs41116 in APC; rs1137918, s227091, rs4585 in ATM; rs712, rs1137282, rs61764370 in KRAS; rs8674 in PARP1 and rs16950113 in SMAD7) were tested for their association with CRC risk in a case-control study (1111 cases and 1469 healthy controls). The role of these miRSNPs was also investigated in relation to clinical outcome on a subset of patients with complete follow-up. rs8679 within PARP1 was associated with CRC risk and patients' survival. In the dominant model, carriers of at least one C allele were at a decreased risk of cancer (P = 0.05). The CC genotype in rs8679 was also associated with an increased risk of recurrence/progression in patients that received 5-FU-based chemotherapy (log-rank test P = 0.03). Carriers of the homozygous variant genotype TT for rs712 in KRAS gene were associated with a decreased risk of rectal cancer (odds ratio (OR) = 0.65, 95% confidence intervals (CI) 0.43-1.00, P = 0.05) while individuals with colon cancer carrying the heterozygous GT genotype showed a longer overall survival (OS) (P = 0.04). We provide the first evidence that variations in potential miRNA-binding target sites in the 3' UTR of PARP1 gene may modulate CRC risk and prognosis after therapy. Further studies are needed to replicate our finding and assess miRSNPs as predictive biomarkers in independent populations.
- MeSH
- 3' nepřekládaná oblast * MeSH
- ATM protein genetika MeSH
- fluoruracil terapeutické užití MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus * MeSH
- kolorektální nádory farmakoterapie genetika metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- mikro RNA metabolismus MeSH
- poly(ADP-ribosa)polymerasa 1 genetika metabolismus MeSH
- prognóza MeSH
- protein familiární adenomatózní polypózy genetika MeSH
- protein Smad7 genetika MeSH
- protinádorové antimetabolity terapeutické užití MeSH
- protoonkogenní proteiny p21(ras) genetika MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- vazebná místa MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH