Alisertib (MLN8237), a novel Aurora A kinase inhibitor, is currently being clinically tested in late-phase trials for the therapy of various malignancies. In the present work, we describe alisertib's potential to perpetrate pharmacokinetic drug-drug interactions (DDIs) and/or to act as an antagonist of multidrug resistance (MDR). In accumulation assays, alisertib potently inhibited ABCC1 transporter, but not ABCB1 or ABCG2. The results of molecular modeling suggested a bifunctional mechanism for interaction on ABCC1. In addition, alisertib was characterized as a low- to moderate-affinity inhibitor of recombinant CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2D6 isoenzymes, but without potential clinical relevance. Drug combination studies revealed the capability of alisertib to synergistically antagonize ABCC1-mediated resistance to daunorubicin. Although alisertib exhibited substrate characteristics toward ABCB1 transporter in monolayer transport assays, comparative proliferation studies showed lack of its MDR-victim behavior in cells overexpressing ABCB1 as well as ABCG2 and ABCC1. Lastly, alisertib did not affect the expression of ABCC1, ABCG2, ABCB1 transporters and CYP1A2, CYP3A4, CYP2B6 isozymes on mRNA level in various systemic and tumoral models. In conclusion, our study suggests that alisertib is a drug candidate with negligible potential for perpetrating systemic pharmacokinetic DDIs on ABCB1, ABCG2 and cytochromes P450. In addition, we introduce alisertib as an effective dual-activity chemosensitizer whose MDR-antagonistic capacities are not impaired by efflux or effect on MDR phenotype. Our in vitro findings provide important pieces of information for clinicians when introducing alisertib into the clinical area.
- MeSH
- ATP Binding Cassette Transporter, Subfamily G, Member 2 genetics metabolism MeSH
- Azepines pharmacokinetics pharmacology MeSH
- Cell Line MeSH
- Catalytic Domain MeSH
- Protein Conformation MeSH
- Drug Interactions MeSH
- Humans MeSH
- Models, Molecular MeSH
- ATP Binding Cassette Transporter, Subfamily B, Member 1 genetics metabolism MeSH
- Multidrug Resistance-Associated Proteins antagonists & inhibitors MeSH
- Dogs MeSH
- Pyrimidines pharmacokinetics pharmacology MeSH
- Gene Expression Regulation drug effects MeSH
- Molecular Docking Simulation MeSH
- Cytochrome P-450 Enzyme System metabolism MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The pregnane X receptor (PXR) is a ligand-activated nuclear receptor controlling hepatocyte expression of numerous genes. Although expression changes in xenobiotic-metabolizing, lipogenic, gluconeogenic and bile acid synthetic genes have been described after PXR activation, the temporal dynamics of their expression is largely unknown. Recently, 3D spheroids of primary human hepatocytes (PHHs) have been characterized as the most phenotypically relevant hepatocyte model. We used 3D PHHs to assess time-dependent expression profiles of 12 prototypic PXR-controlled genes in the time course of 168 h of rifampicin treatment (1 or 10 μM). We observed a similar bell-shaped time-induction pattern for xenobiotic-handling genes (CYP3A4, CYP2C9, CYP2B6, and MDR1). However, we observed either biphasic profiles for genes involved in endogenous metabolism (FASN, GLUT2, G6PC, PCK1, and CYP7A1), a decrease for SHP or oscillation for PDK4 and PXR. The rifampicin concentration determined the expression profiles for some genes. Moreover, we calculated half-lives of CYP3A4 and CYP2C9 mRNA under induced or basal conditions and we used a mathematical model to describe PXR-mediated regulation of CYP3A4 expression employing 3D PHHs. The study shows the importance of long-term time-expression profiling of PXR target genes in phenotypically stable 3D PHHs and provides insight into PXR function in liver beyond our knowledge from conventional 2D in vitro models.
In today's modern society, it seems to be more and more challenging to cope with life stresses. The effect of psychological stress on emotional and physical health can be devastating, and increased stress is associated with increased rates of heart attack, hypertension, obesity, addiction, anxiety and depression. This review focuses on the possibility of an influence of psychological stress on the metabolism of selected antidepressants (TCAs, SSRIs, SNRIs, SARIs, NDRIs a MMAs) and anxiolytics (benzodiazepines and azapirone), as patients treated with antidepressants and/or anxiolytics can still suffer from psychological stress. Emphasis is placed on the drug metabolism mediated by the enzymes of Phase I, typically cytochromes P450 (CYPs), which are the major enzymes involved in drug metabolism, as the majority of psychoactive substances are metabolized by numerous CYPs (such as CYP1A2, CYP2B6, CYP2C19, CYP2C9, CYP2A6, CYP2D6, CYP3A4). As the data on the effect of stress on human enzymes are extremely rare, modulation of the efficacy and even regulation of the biotransformation pathways of drugs by psychological stress can be expected to play a significant role, as there is increasing evidence that stress can alter drug metabolism, hence there is a risk of less effective drug metabolism and increased side effects.
Sesquiterpene lactone helenalin is used as an antiphlogistic in European and Chinese folk medicine. The pharmacological activities of helenalin have been extensively investigated, yet insufficient information exists about its metabolic properties. The objectives of the present study were (1) to investigate the in vitro NADPH-dependent metabolism of helenalin (5 and 100 μM) using human and rat liver microsomes and liver cytosol, (2) to elucidate the role of human cytochrome P450 (CYP) enzymes in its oxidative metabolism, and (3) to study the inhibition of human CYPs by helenalin. Five oxidative metabolites were detected in NADPH-dependent human and rat liver microsomal incubations, while two reduced metabolites were detected only in NADPH-dependent human microsomal and cytosolic incubations. In human liver microsomes, the main oxidative metabolite was 14-hydroxyhelenalin, and in rat liver microsomes 9-hydroxyhelenalin. The overall oxidation of helenalin was several times more efficient in rat than in human liver microsomes. In humans, CYP3A4 and CYP3A5 followed by CYP2B6 were the main enzymes responsible for the hepatic metabolism of helenalin. The extrahepatic CYP2A13 oxidized helenalin most efficiently among CYP enzymes, possessing the Km value of 0.6 μM. Helenalin inhibited CYP3A4 (IC50 = 18.7 μM) and CYP3A5 (IC50 = 62.6 μM), and acted as a mechanism-based inhibitor of CYP2A13 (IC50 = 1.1 μM, KI = 6.7 μM, and kinact = 0.58 ln(%)/min). It may be concluded that the metabolism of helenalin differs between rats and humans, in the latter its oxidation is catalyzed by hepatic CYP2B6, CYP3A4, CYP3A5, and CYP3A7, and extrahepatic CYP2A13.
- MeSH
- Species Specificity MeSH
- Inhibitory Concentration 50 MeSH
- Cytochrome P-450 Enzyme Inhibitors administration & dosage metabolism pharmacology MeSH
- Microsomes, Liver metabolism MeSH
- Rats MeSH
- Humans MeSH
- NADP metabolism MeSH
- Rats, Wistar MeSH
- Sesquiterpenes, Guaiane administration & dosage metabolism pharmacology MeSH
- Cytochrome P-450 Enzyme System drug effects metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
AIM: Plasma values of nicotine and its metabolites are highly variable, and this variability has a strong genetic influence. In our study, we analysed the impact of common polymorphisms associated with smoking on the plasma values of nicotine, nicotine metabolites and their ratios and investigated the potential effect of these polymorphisms and nicotine metabolite ratios on the successful treatment of tobacco dependence. METHODS: Five variants (rs16969968, rs6474412, rs578776, rs4105144 and rs3733829) were genotyped in a group of highly dependent adult smokers (n=103). All smokers underwent intensive treatment for tobacco dependence; 33 smokers were still abstinent at the 12-month follow-up. RESULTS: The rs4105144 (CYP2A6, P<0.005) and rs3733829 (EGLN2, P<0.05) variants were significantly associated with plasma concentrations of 3OH-cotinine and with 3OH-cotinine: cotinine ratios. Similarly, the unweighted gene score was a significant (P<0.05) predictor of both cotinine:nicotine and 3OH-cotinine:cotinine ratios. No associations between the analysed polymorphisms or nicotine metabolite ratios and nicotine abstinence rate were observed. CONCLUSION: Although CYP2A6 and EGLN2 polymorphisms were associated with nicotine metabolism ratios, neither these polymorphisms nor the ratios were associated with abstinence rates.
- MeSH
- Cytochrome P-450 CYP2A6 genetics MeSH
- Cytochrome P-450 CYP2B6 genetics MeSH
- Adult MeSH
- Polymorphism, Single Nucleotide * MeSH
- Middle Aged MeSH
- Humans MeSH
- Nicotine blood metabolism MeSH
- Receptors, Nicotinic genetics MeSH
- Tobacco Use Disorder blood genetics metabolism therapy MeSH
- Nerve Tissue Proteins genetics MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Female childhood cancer survivors (CCSs) carry a risk of therapy-related gonadal dysfunction. Alkylating agents (AA) are well-established risk factors, yet inter-individual variability in ovarian function is observed. Polymorphisms in CYP450 enzymes may explain this variability in AA-induced ovarian damage. We aimed to evaluate associations between previously identified genetic polymorphisms in CYP450 enzymes and AA-related ovarian function among adult CCSs. METHODS: Anti-Müllerian hormone (AMH) levels served as a proxy for ovarian function in a discovery cohort of adult female CCSs, from the pan-European PanCareLIFE cohort (n = 743; age (years): median 25.8, interquartile range (IQR) 22.1-30.6). Using two additive genetic models in linear and logistic regression, nine genetic variants in three CYP450 enzymes were analyzed in relation to cyclophosphamide equivalent dose (CED) score and their impact on AMH levels. The main model evaluated the effect of the variant on AMH and the interaction model evaluated the modifying effect of the variant on the impact of CED score on log-transformed AMH levels. Results were validated, and meta-analysis performed, using the USA-based St. Jude Lifetime Cohort (n = 391; age (years): median 31.3, IQR 26.6-37.4). RESULTS: CYP3A4*3 was significantly associated with AMH levels in the discovery and replication cohort. Meta-analysis revealed a significant main deleterious effect (Beta (95% CI): -0.706 (-1.11--0.298), p-value = 7 × 10-4) of CYP3A4*3 (rs4986910) on log-transformed AMH levels. CYP2B6*2 (rs8192709) showed a significant protective interaction effect (Beta (95% CI): 0.527 (0.126-0.928), p-value = 0.01) on log-transformed AMH levels in CCSs receiving more than 8000 mg/m2 CED. CONCLUSIONS: Female CCSs CYP3A4*3 carriers had significantly lower AMH levels, and CYP2B6*2 may have a protective effect on AMH levels. Identification of risk-contributing variants may improve individualized counselling regarding the treatment-related risk of infertility and fertility preservation options.
- Publication type
- Journal Article MeSH
The constitutive androstane receptor (CAR) is the essential regulator of genes involved both in xenobiotic and endobiotic metabolism. Diazepam has been shown as a potent stimulator of CAR nuclear translocation and is assumed as an indirect CAR activator not interacting with the CAR cavity. In this study, we sought to determine if diazepam is a ligand directly interacting with the CAR ligand binding domain (LBD) and if it regulates its target genes in a therapeutically relevant concentration. We used different CAR constructs in translocation and luciferase reporter assays, recombinant CAR-LBD in a TR-FRET assay, and target genes induction studied in primary human hepatocytes (PHHs), HepaRG cells, and in CAR humanized mice. We also used in silico docking and CAR-LBD mutants to characterize the interaction of diazepam and its metabolites with the CAR cavity. Diazepam and its metabolites such as nordazepam, temazepam, and oxazepam are activators of CAR+Ala in translocation and two-hybrid assays and fit the CAR cavity in docking experiments. In gene reporter assays with CAR3 and in the TR-FRET assay, only diazepam significantly interacts with CAR-LBD. Diazepam also promotes up-regulation of CYP2B6 in PHHs and in HepaRG cells. However, in humanized CAR mice, diazepam significantly induces neither CYP2B6 nor Cyp2b10 genes nor does it regulate critical genes involved in glucose and lipids metabolism and liver proliferation. Thus, we demonstrate that diazepam interacts with human CAR-LBD as a weak ligand, but it does not significantly affect expression of tested CAR target genes in CAR humanized mice.
- MeSH
- Cell Line MeSH
- Diazepam pharmacology MeSH
- Adult MeSH
- Hepatocytes drug effects MeSH
- Liver drug effects MeSH
- Middle Aged MeSH
- Humans MeSH
- Ligands MeSH
- Mice MeSH
- Cell Proliferation drug effects MeSH
- Protein Domains drug effects MeSH
- Receptors, Cytoplasmic and Nuclear metabolism MeSH
- Genes, Reporter drug effects genetics MeSH
- Protein Transport drug effects MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Objectives Cytochromes P450 play a role in human drugs metabolic pathways and their genes are among the most variable in humans. The aim of this study was to analyze genotype frequencies of five common polymorphisms of cytochromes P450 in Roma/Gypsy and Czech (non-Roma) population samples with Czech origin. Methods Roma/Gypsy (n=302) and Czech subjects (n=298) were genotyped for CYP1A2 (rs762551), CYP2A6 (rs4105144), CYP2B6 (rs3745274) and CYP2D6 (rs3892097; rs1065852) polymorphisms using PCR-RFLP or Taqman assay. Results We found significant allelic/genotype differences between ethnics in three genes. For rs3745274 polymorphism, there was increased frequency of T allele carriers in Roma in comparison with Czech population (53.1 vs. 43.7%; p=0.02). For rs4105144 (CYP2A6) there was higher frequency of T allele carriers in Roma in comparison with Czech population (68.7 vs. 49.8%; p<0.0001). For rs3892097 (CYP2D6) there was more carriers of the A allele between Roma in comparison with Czech population (39.2 vs. 38.2%; p=0.048). Genotype/allelic frequencies of CYP2D6 (rs1065852) and CYP1A2 (rs762551) variants did not significantly differ between the ethnics. Conclusions There were significant differences in allelic/genotype frequencies of some, but not all cytochromes P450 polymorphisms between the Czech Roma/Gypsies and Czech non-Roma subjects.
- MeSH
- Cytochrome P-450 CYP1A2 genetics metabolism MeSH
- Cytochrome P-450 CYP2D6 genetics metabolism MeSH
- Cytochrome P-450 CYP2A6 genetics metabolism MeSH
- Cytochrome P-450 CYP2B6 genetics metabolism MeSH
- Adult MeSH
- Genotype MeSH
- Humans MeSH
- Polymorphism, Genetic genetics MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Entrectinib is a new tyrosine kinase inhibitor that was recently approved for the treatment of ROS1-positive metastatic non-small cell lung cancer (NSCLC). In this study, we aimed to characterize its potential to act as a modulator of pharmacokinetic cytostatic resistance and perpetrator of drug interactions. In accumulation studies, entrectinib exhibited potent inhibition of ABCB1, while only moderate interaction was recorded for ABCG2 and ABCC1 efflux transporters. Furthermore, incubation assays revealed the potential of this drug to inhibit various recombinant cytochrome P450 enzymes, which can be ranked according to inhibitory affinities as follows: CYP2C8 ≈ CYP3A4 > CYP2C9 > CYP2C19 ≈ CYP3A5 > CYP2D6 > CYP2B6 > CYP1A2. Additionally, in silico docking analysis confirmed entrectinib's interactions with ABCB1 and CYP3A4 and resolved their possible molecular background. In subsequent drug combination experiments, we demonstrated the ability of entrectinib to synergize with daunorubicin in various ABCB1-expressing cellular models. Moreover, the comparative proliferation study results suggested that the anticancer efficacy of entrectinib is not affected by the functional presence of tested ABC transporters. In contrast to ABCB1-related data, no resistance reversal effect was recorded for the combination with docetaxel in HepG2-CYP3A4 cells. In the final experimental set, we observed no significant changes in ABCB1, ABCG2, ABCC1 or CYP3A4 gene expression in NSCLC cells exposed to entrectinib. In summary, our work indicates that entrectinib may be a perpetrator of clinically relevant pharmacokinetic drug interactions and modulator of ABCB1-mediated resistance. Our in vitro results might provide a valuable foundation for future clinical investigations.
- MeSH
- Benzamides pharmacology MeSH
- A549 Cells MeSH
- Hep G2 Cells MeSH
- Madin Darby Canine Kidney Cells MeSH
- Drug Resistance, Neoplasm drug effects physiology MeSH
- Cytochrome P-450 CYP3A * chemistry metabolism MeSH
- Cytostatic Agents pharmacology MeSH
- Indazoles pharmacology MeSH
- Protein Kinase Inhibitors pharmacology MeSH
- Humans MeSH
- Drug Resistance, Multiple drug effects physiology MeSH
- Cell Line, Tumor MeSH
- ATP Binding Cassette Transporter, Subfamily B antagonists & inhibitors chemistry metabolism MeSH
- Dogs MeSH
- Protein Structure, Secondary MeSH
- Molecular Docking Simulation methods MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Resveratrol (RSV) is a stilbene phytochemical common in food and red wine. RSV inhibits cytochrome P450 CYP3A4 activity and interacts with the pregnane X receptor (PXR), the central regulator of drug/xenobiotic metabolizing enzyme expression. In this work, we comprehensively examined the effects of 13 stilbenes (trans- and cis-resveratrol, trans- and cis-piceatannol, oxyresveratrol, pterostilbene, pinostilbene, a,b-dihydroresveratrol, trans- and cis-trismethoxyresveratrol, trans-3,4,5,4'-tetramethoxystilbene, trans-2,4,3',5'-tetramethoxystilbene, trans-4-methoxystilbene), on CYP3A4 and CYP2B6 mRNA induction, and on CYP3A4/5, CYP2C8/9/19, CYP2D6, CYP2A6, CYP2E1, CYP1A2 and CYP2B6 cytochrome P450 enzyme activities. Expression experiments in five different primary human hepatocyte preparations, reporter gene assays, and ligand binding assays with pregnane X (PXR) and constitutive androstane (CAR) receptors were performed. Inhibition of cytochrome P450 enzymes was examined in human microsomes. We found that only polymethoxylated stilbenes are prone to significantly induce CYP2B6 or CYP3A4 in primary human hepatocytes via pregnane X receptor (PXR) interaction. Natural resveratrol derivatives such as trans- and cis-RSV, oxyresveratrol, pinostilbene and pterostilbene significantly inhibit CYP3A4/5 enzymatic activities; however, only trans-RSV significantly inhibits CYP3A4/5 activity (both testosterone 6β-hydroxylation and midazolam 1´-hydroxylation) in micromolar concentrations by a non-competitive mechanism, suggesting a potential risk of food-drug interactions with CYP3A4/5 substrates.