Breast milk is crucial for infant health, offering essential nutrients and immune protection. However, despite increasing exposure risks from nanoparticles (NPs), their potential infiltration into human breast milk remains poorly understood. This study provides a comprehensive chemical profile of NPs in human breast milk, analyzing their elemental composition, surface charge, hydrodynamic size, and crystallinity. NPs were detected in 42 out of 53 milk samples, with concentrations reaching up to 1.12 × 1011 particles/mL. These particles comprised nine elements, with O, Si, Fe, Cu, and Al being the most frequently detected across all samples. We establish a mechanistic axis for NP infiltration, involving penetration of the intestine/air-blood barriers, circulation in blood vessels, crossing the blood-milk barrier via transcytosis or immune cell-mediated transfer, and eventual accumulation in milk. Structure-activity relationship analysis reveals that smaller, neutral-charged NPs exhibit stronger infiltration capacity, offering potential for regulating NP behavior at biological barriers through engineering design. This study provides the chemical profiles of NPs in human breast milk and uncovers their infiltration pathways.
- MeSH
- Humans MeSH
- Milk, Human * chemistry metabolism MeSH
- Nanoparticles * chemistry analysis MeSH
- Particle Size MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
For connecting flow-through analytical methods with capillary electrophoresis, a chip working in the air-assisted flow gating interface regime is cast from poly(dimethylsiloxane). In the injection space, the exit from the delivery capillary is placed close to the entrance to the separation capillary. Prior to injecting the sample into the separation capillary, the background electrolyte is forced out of the injection space by a stream of air. In the empty space, a drop of the sample with a volume of <100 nL is formed between the exit from the delivery capillary and the entrance into the separation capillary, from which the sample is injected hydrodynamically into the separation capillary. After injection, the injection space is filled with BGE, and the separation can be begun. Three geometric variants for the mutual geometric arrangement of the delivery and separation capillaries were tested: the delivery capillary is placed perpendicular to the separation capillary, from either above or below, or the capillaries are placed axially, that is, directly opposite one another. All of the variants are equivalent from the analytical and separation efficiency viewpoints. The repeatability expressed by RSD is up to 5%. The tested flow gating interface variants are also suitable for continuous and discontinuous sampling at flow rates of the order of units of μL/min. The developed instrument for sequential electrophoretic analysis operates fully automatically and is suitable for rapid sequential monitoring of dynamic processes.
- MeSH
- Electrophoresis, Capillary * MeSH
- Electrolytes MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Introduction: Fe3O4 nanoparticles (Fe3O4 NPs) with multiple functionalities are intriguing candidates for various biomedical applications. Materials and Methods: This study introduced a simple and green synthesis of Fe3O4 NPs using a low-cost stabilizer of plant waste extract rich in polyphenols content with a well-known antioxidant property as well as anticancer ability to eliminate colon cancer cells. Herein, Fe3O4 NPs were fabricated via a facile co-precipitation method using the crude extract of Garcinia mangostana fruit peel as a green stabilizer at different weight percentages (1, 2, 5, and 10 wt.%). The samples were analyzed for magnetic hyperthermia and then in vitro cytotoxicity assay was performed. Results: The XRD planes of the samples were corresponding to the standard magnetite Fe3O4 with high crystallinity. From TEM analysis, the green synthesized NPs were spherical with an average size of 13.42±1.58 nm and displayed diffraction rings of the Fe3O4 phase, which was in good agreement with the obtained XRD results. FESEM images showed that the extract covered the surface of the Fe3O4 NPs well. The magnetization values for the magnetite samples were ranging from 49.80 emu/g to 69.42 emu/g. FTIR analysis verified the functional groups of the extract compounds and their interactions with the NPs. Based on DLS results, the hydrodynamic sizes of the Fe3O4 nanofluids were below 177 nm. Furthermore, the nanofluids indicated the zeta potential values up to -34.92±1.26 mV and remained stable during four weeks of storage, showing that the extract favorably improved the colloidal stability of the Fe3O4 NPs. In the hyperthermia experiment, the magnetic nanofluids showed the acceptable specific absorption rate (SAR) values and thermosensitive performances under exposure of various alternating magnetic fields. From results of in vitro cytotoxicity assay, the killing effects of the synthesized samples against HCT116 colon cancer cells were mostly higher compared to those against CCD112 colon normal cells. Remarkably, the Fe3O4 NPs containing 10 wt.% of the extract showed a lower IC50 value (99.80 µg/mL) in HCT116 colon cancer cell line than in CCD112 colon normal cell line (140.80 µg/mL). Discussion: This research, therefore, introduced a new stabilizer of Garcinia mangostana fruit peel extract for the biosynthesis of Fe3O4 NPs with desirable physiochemical properties for potential magnetic hyperthermia and colon cancer treatment.
- MeSH
- Antioxidants pharmacology MeSH
- Cell Death drug effects MeSH
- X-Ray Diffraction MeSH
- Dynamic Light Scattering MeSH
- Garcinia mangostana chemistry MeSH
- Hydrodynamics MeSH
- Hyperthermia, Induced * MeSH
- Inhibitory Concentration 50 MeSH
- Humans MeSH
- Magnetite Nanoparticles chemistry ultrastructure MeSH
- Cell Line, Tumor MeSH
- Fruit chemistry MeSH
- Antineoplastic Agents pharmacology MeSH
- Plant Extracts chemistry MeSH
- Spectrometry, X-Ray Emission MeSH
- Spectroscopy, Fourier Transform Infrared MeSH
- Green Chemistry Technology methods MeSH
- Temperature MeSH
- Particle Size MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
An analytical apparatus is described, based on on-line connection of electrophoresis in a short capillary with a dialysis unit enabling dialysis in micro-litre sample volumes into submicro-litre volumes of an acceptor solution in a dialysing fibre. After a defined dialysis time, the dialysate from the dialysing fibre is injected into a separation capillary through an air-assisted flow-gating interface cast from PDMS. In the flow-gating injection space, the exit from the delivery capillary bringing the dialysate is placed directly opposite the entrance into the separation capillary at a distance of 380 μm. In order to enable injection of a very small volume of dialysate, the background electrolyte is forced out of the injection space with air before the injection, so that a drop of dialysate with a volume of about 0.1 μL is formed between the exit from the delivery and the entrance into the separation capillary; the dialysate is injected hydrodynamically from this dialysate drop. Then the injection space is filled with the background electrolyte and the separation is commenced. The basic properties of the apparatus were tested on model mixtures of inorganic cations (K+, Ba2+ and Na+) and organic molecules (creatinine, histidine and arginine). The applicability to real samples was tested on the determination of basic amino acids (histidine, lysine and arginine) in a blood serum sample.
- Publication type
- Journal Article MeSH
A new kind of flow gating interface (FGI) has been designed for online connection of CE with flow-through analytical techniques. The sample is injected into the separation capillary from a space from which the BGE was forced out by compressed air. A drop of sample solution with a volume of 75 nL is formed between the outlet of the delivery capillary supplying the solution from the flow-through apparatus and the entrance to the CE capillary; the sample is hydrodynamically injected into the CE capillary from this drop. The sample is not mixed with the surrounding BGE solution during injection. The functioning of the proposed FGI is fully automated and the individual steps of the injection process are controlled by a computer. The injection sequence lasts several seconds and thus permits performance of rapid sequential analyses of the collected sample. FGI was tested for the separation of equimolar 50 μM mixture of the inorganic cations K+ , Ba2+ , Na+ , Mg2+ , and Li+ in 50 mM acetic acid/20 mM Tris (pH 4.5) as BGE. The obtained RSD values for the migration times varied in the range 0.7-1.0% and the values for the peak area were 0.7-1.4%; RSD were determined for ten repeated measurements.
In this article, optimization of BGE for simultaneous separation of inorganic ions, organic acids, and glutathione using dual C4 D-LIF detection in capillary electrophoresis is presented. The optimized BGE consisted of 30 mM 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid, 15 mM 2-amino-2-hydroxymethyl-propane-1,3-diol, and 2 mM 18-crown-6 at pH 7.2 and allowed simultaneous separation of ten inorganic anions and cations, three organic acids and glutathione in 20 min. The samples were injected hydrodynamically from both capillary ends using the double-opposite end injection principle. Sensitive detection of anions, cations, and organic acids with micromolar LODs using C4 D and simultaneously glutathione with nanomolar LODs using LIF was achieved in a single run. The developed BGE may be useful in analyses of biological samples containing analytes with differing concentrations of several orders of magnitude that is not possible with single detection mode.
- MeSH
- Breath Tests methods MeSH
- Equipment Design MeSH
- Electric Conductivity MeSH
- Electrophoresis, Capillary methods MeSH
- Spectrometry, Fluorescence methods MeSH
- Glutathione analysis isolation & purification MeSH
- Ions analysis isolation & purification MeSH
- Carboxylic Acids analysis isolation & purification MeSH
- Humans MeSH
- Limit of Detection MeSH
- Linear Models MeSH
- Reproducibility of Results MeSH
- Tears chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Perampanel is a novel antiepileptic drug used in paediatric patients. Existing methods that determine serum perampanel are of limited practicability. We developed a novel capillary electrophoresis (CE) method using a new version of acetonitrile stacking for on-line sample pre-concentration, and fluorescence detection (FD). CE separations were performed in a fused-silica capillary where the electroosmotic flow was reduced by coating the inner surface using a INST coating solution. The optimised background electrolyte composition was 50 mM chloroacetic acid with addition of 0.5% m/v polyvinylalcohol (pH 2.15) and separation was driven by application of positive voltage + 30 kV. Serum samples (25 μL) treated by the addition of acetonitrile in a ratio of 1:3 v/v were each injected into the capillary at a large volume that corresponded to the length (129 mm) of the sample zone (hydrodynamic pressure impulse 6000 mbars). Acetonitrile stacking is based on the forcing the sample zone out of the capillary with simultaneous application of the separation voltage. Under such conditions, the enhancing factor achieves the value 57 for peak area compared to the small sample injection length (3.2 mm, hydrodynamic pressure impulse 150 mbar.s). A fluorescence detector with a broad excitation filter (240-400 nm) and an emission filter (495 nm) was used for visualisation of the native fluorescence of perampanel. The calibration dependence of the method was linear (in the range of 10-1000 ng mL-1), with adequate accuracy (99.8-103.3 %) and precision (13.1%). LOD and LOQ for perampanel were 2.9 ng mL-1 and 9.5 ng mL-1, respectively. Clinical applicability was validated using serum samples from patients treated with perampanel and the results corresponded with reference LC-MS/MS values. Our method offers a promising alternative for determining serum perampanel with several advantages. In particular, the low quantity of serum (25 μL) required means that testing can be performed on samples obtained for monitoring other antiepileptic medications, and thus reduces the test-burden on paediatric patients.
A sensitive capillary electrophoretic method with on-line sample preconcentration by large volume sample stacking has been developed for determination of the anti-microbial agent pentamidine. The separation is performed in a fused silica capillary coated with covalently bound hydroxypropyl cellulose, with an internal diameter of 50 μm and length of 31.5 cm; the background electrolyte was 100 mM acetic acid/Tris at pH 4.7. The stacking is tested using a model sample of 1 μM pentamidine dissolved in 25% infusion solution and 75% acidified acetonitrile. Stacking permits the injection of a sample zone with a length of 95% of the total capillary length to achieve an enhancing factor of 77 compared to low injection into 1.8% of the total capillary length, with simultaneous high separation efficiency of approximately 1 350 000 plates/m. Stacking is based on simultaneous application of a separation field and a hydrodynamic pressure to force the acetonitrile zone out of the capillary. This approach allows the determination of pentamidine in rat blood plasma using only 12.5 μL of plasma treated by the addition of acetonitrile in a ratio of 1:3 v/v. The attained LOD is 0.03 μM and the intra-day repeatability is 0.1% for the migration time and 1.0% for the peak area at the injection 28.3% of capillary length. The performed pharmacokinetic study with ten-second scanning of the blood reveals rapid dynamics of pentamidine in the arterial bloodstream, while the changes are much slower in the venous system.
- MeSH
- Anti-Infective Agents blood MeSH
- Electrophoresis, Capillary methods MeSH
- Rats MeSH
- Limit of Detection MeSH
- Linear Models MeSH
- Pentamidine blood MeSH
- Rats, Wistar MeSH
- Reproducibility of Results MeSH
- Pressure MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
An electrophoretic apparatus with a flow-gating interface has been developed, enabling hydrodynamic sequence injection of the sample into the separation capillary from the liquid flow by underpressure generated in the outlet electrophoretic vessel. The properties of the apparatus were tested on an artificial sample of an equimolar mixture of 100μM potassium and sodium ions and arginine. The repeatability of the injection of the tested ions expressed as RSD (in%) for the peak area, peak height and migration time was in the range 0.76-2.08, 0.18-0.68 and 0.28-0.48, respectively. Under optimum conditions, the apparatus was used for sequence monitoring of the reaction between the antidiabetic drug phenyl biguanide and the glycation agent methyl glyoxal. The reaction solution was continuously sampled by a microdialysis probe from a thermostated external vessel using a syringe pump at a flow rate of 3μLmin(-1) and was injected into a separation capillary at certain time intervals. The electrophoretic separation progressed in a capillary with an internal diameter of 50μm with a length of 11.5cm and was monitored using a contactless conductivity detector.
- MeSH
- Arginine MeSH
- Biguanides chemistry MeSH
- Time Factors MeSH
- Potassium MeSH
- Electrophoresis, Capillary instrumentation methods MeSH
- Hydrodynamics * MeSH
- Hypoglycemic Agents chemistry MeSH
- Microdialysis MeSH
- Pyruvaldehyde chemistry MeSH
- Solutions MeSH
- Sodium MeSH
- Publication type
- Journal Article MeSH
A coaxial flow-gating interface is described in which the separation capillary passes through the sampling capillary. Continuous flow of the sample solution flowing out of the sampling capillary is directed away from the injection end of the separation capillary by counter-current flow of the gating solution. During the injection, the flow of the gating solution is interrupted, so that a plug of solution is formed at the inlet into the separation capillary, from which the sample is hydrodynamically injected. Flow-gating interfaces are originally designed for on-line connection of capillary electrophoresis with analytical flow-through methods. The basic properties of the described coaxial flow-gating interface were obtained in a simplified arrangement in which a syringe pump with sample solution has substituted analytical flow-through method. Under the optimized conditions, the properties of the tested interface were determined by separation of K+ , Ba2+ , Na+ , Mg2+ and Li+ ions in aqueous solution at equimolar concentrations of 50 μM. The repeatability of the migration times and peak areas evaluated for K+ , Ba2+ and Li+ ions and expressed as relative standard deviation did not exceed 1.4%. The interface was used to determine lithium in mineral water and taurine in an energy drink.
- MeSH
- Electrophoresis, Capillary * MeSH
- Energy Drinks analysis MeSH
- Ions analysis MeSH
- Lithium analysis MeSH
- Mineral Waters analysis MeSH
- Publication type
- Journal Article MeSH