Q80042146 Dotaz Zobrazit nápovědu
Microflow liquid chromatography interfaced with mass spectrometry (μLC-MS/MS) is increasingly applied for high-throughput profiling of biological samples and has been proven to have an acceptable trade-off between sensitivity and reproducibility. However, lipidomics applications are scarce. We optimized a μLC-MS/MS system utilizing a 1 mm inner diameter × 100 mm column coupled to a triple quadrupole mass spectrometer to establish a sensitive, high-throughput, and robust single-shot lipidomics workflow. Compared to conventional lipidomics methods, we achieve a ∼4-fold increase in response, facilitating quantification of 351 lipid species from a single iPSC-derived cerebral organoid during a 15 min LC-MS analysis. Consecutively, we injected 303 samples over ∼75 h to prove the robustness and reproducibility of the microflow separation. As a proof of concept, μLC-MS/MS analysis of Alzheimer's disease patient-derived iPSC cerebral organoid reveals differential lipid metabolism depending on APOE phenotype (E3/3 vs E4/4). Microflow separation proves to be an environmentally friendly and cost-effective method as it reduces the consumption of harmful solvents. Also, the data demonstrate robust, in-depth, high-throughput performance to enable routine clinical or biomedical applications.
- MeSH
- apolipoproteiny E MeSH
- chromatografie kapalinová metody MeSH
- fenotyp MeSH
- kapalinová chromatografie-hmotnostní spektrometrie * MeSH
- lidé MeSH
- lipidomika MeSH
- reprodukovatelnost výsledků MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Twenty nine phenolic compounds comprising nine phenolic acids, sixteen flavonoids (including eight tea catechins, glycosides and aglycones), four coumarins plus caffeine were analysed within 20 min using ultra high performance liquid chromatography (UHPLC) with PDA detection. UHPLC system was equipped with C18 analytical column (100 mm x 2.1mm, 1.7 microm), utilising 0.1% formic acid and methanol mobile phase in the gradient elution mode. The developed method was tested for the system suitability: resolution, asymmetry factor, peak capacity, retention time repeatability and peak area repeatability. The method was fully validated in the terms of linearity (r(2)>0.9990 for all 30 compounds), range (typically 1-100 mg L(-1)), LOD, LOQ, inter/intra-day precision (<3% and <9% respectively) and inter/intra-day accuracy (typically 100+/-10%). Subsequently the method was applied to the identification (spectral information and peak purity calculations were profited) and quantification of phenolic compounds and caffeine present in tea infusions and extracts.
- MeSH
- čaj chemie MeSH
- časové faktory MeSH
- fenoly analýza MeSH
- flavonoidy analýza MeSH
- kofein analýza MeSH
- kumariny analýza MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- vysokoúčinná kapalinová chromatografie ekonomika metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
Matrix-assisted laser desorption/ionisation (MALDI) of small molecules is challenging and in most cases impossible due to interferences from matrix ions precluding analysis of molecules <300-500 Da. A common matrix such as ferulic acid belongs to an important class of compounds associated with antioxidant activity. If the shared phenolic structure is related to the propensity as an active MALDI matrix then it follows that direct laser desorption/ionisation should be possible for polyphenols. Indeed matrix-less laser desorption/ionisation mass spectrometry is achieved whereby the analyte functions as a matrix and was used to monitor low molecular weight compounds in wine samples. Sensitivity ranging from 0.12-87 pmol/spot was achieved for eight phenolic acids (4-coumaric, 4-hydroxybenzoic, caffeic, ferulic, gallic, protocatechuic, syringic, vanillic) and 0.02 pmol/spot for trans-resveratrol. Additionally, 4-coumaric, 4-hydroxybenzoic, caffeic, ferulic, gallic, syringic, vanillic acids and trans-resveratrol were identified in wine samples using accurate mass measurements consistent with reported profiles based on liquid chromatography (LC)/MS. Minimal sample pre-treatment make the technique potentially appropriate for fingerprinting, screening and quality control of wine samples. Copyright (c) 2009 John Wiley & Sons, Ltd.
- MeSH
- elektrická vodivost MeSH
- elektroforéza kapilární metody MeSH
- financování organizované MeSH
- glukosamin analýza MeSH
- kalibrace MeSH
- léčivé přípravky chemie MeSH
- potravní doplňky analýza MeSH
- referenční standardy MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- validační studie MeSH
Two novel chromatographic methods both based on utilization of sub-2-micron particle columns were developed for the analysis of phenolic compounds in this work. An HPLC system was equipped with C(18) silica-based analytical column (50 mm x 4.6 mm, 1.8 microm) and a UPLC system with ethylene-bridged hybrid C(18) analytical column (100 mm x 2.1 mm, 1.7 microm). In total 34 phenolic substances were divided into groups of phenolic acids, flavonoids, catechins and coumarins and were analysed in sequence using different gradient methods. System suitability test data, including repeatability of retention time and peak area, mean values of asymmetry factor, resolution, peak capacity and the height equivalent of a theoretical plate were determined for each gradient method by 10 replicate injections. The developed methods were applied in the analysis of real samples (grape wines, teas).
A novel method for the non-derivatization liquid chromatographic determination of metals (potassium, aluminium, calcium and magnesium) and organic compounds (ascorbate and aspartate) was developed and validated based on evaporative light scattering detection (ELSD). Separation of calcium, magnesium and aluminium was achieved by the cation exchange column Dionex CS-14 and an aqueous TFA mobile phase according to the following time program: 0-6 min TFA 0.96 mL L(-1), 6-7 min linear gradient from TFA 0.96-6.4 mL L(-1). Separation of potassium, magnesium and aspartate was achieved by the lipophilic C18 Waters Spherisorb column and isocratic aqueous 0.2 mL L(-1) TFA mobile phase. Separation of sodium, magnesium, ascorbate and citrate was also achieved by the C18 analytical column, according to the following elution program: 0-2.5 min aqueous nonafluoropentanoic acid (NFPA) 0.5 mL L(-1); 2.5-3.5 min linear gradient from 0.5 mL L(-1) NFPA to 1.0 mL L(-1) TFA. In all cases, evaporation temperature was 70 degrees C, pressure of the nebulizing gas (nitrogen) 3.5 bar, gain 11 and the flow rate 1.0 mL min(-1). Resolution among calcium and magnesium was 1.8, while for all other separations was > or = 3.2. Double logarithmic calibration curves were obtained within various ranges from 3-24 to 34-132 microg mL(-1), and with good correlation (r>0.996). Asymmetry factor ranged from 0.9 to 1.9 and limit of detection from 1.3 (magnesium) to 17 microg mL(-1) (ascorbate). The developed method was applied for the assay of potassium, magnesium, calcium, aluminium, aspartate and ascorbate in pharmaceuticals and food-supplements. The accuracy of the method was evaluated using spiked samples (%recovery 95-105%, %R.S.D. < 2) and the absence of constant or proportional errors was confirmed by dilution experiments.