Sample stacking
Dotaz
Zobrazit nápovědu
This contribution is a methodological review of the publications about the topic from the last 2 years. Therefore, it is primarily organized according to the methods and procedures used in surveyed papers and the origin and type of sample and specification of analytes form the secondary structure. The introductory part about navigation in the architecture of stacking brings a brief characterization of the various stacking methods, with the description of mutual links to each other and important differences among them. The main body of the article brings a survey of publications organized according to main principles of stacking and then according to the origin and type of the sample. Provided that the paper cited gave explicitly the relevant data, information about the BGE(s) used, procedure, detector employed, and reached LOD and/or concentration effect is given. The papers where the procedure used is a combination of diverse fragments and parts of various stacking techniques are mentioned in a special section on combined techniques. The concluding remarks in the final part of the review evaluate present state of art and the trends of sample stacking in CE.
- MeSH
- analýza moči přístrojové vybavení metody MeSH
- analýza potravin přístrojové vybavení metody MeSH
- elektroforéza kapilární přístrojové vybavení metody MeSH
- hematologické testy přístrojové vybavení metody MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- monitorování životního prostředí přístrojové vybavení metody MeSH
- voda analýza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Sample stacking is a term denoting a multifarious class of methods and their names that are used daily in CE for online concentration of diluted samples to enhance separation efficiency and sensitivity of analyses. The essence of these methods is that analytes present at low concentrations in a large injected sample zone are concentrated into a short and sharp zone (stack) in the separation capillary. Then the stacked analytes are separated and detected. Regardless of the diversity of the stacking electromigration methods, one can distinguish four main principles that form the bases of nearly all of them: (i) Kohlrausch adjustment of concentrations, (ii) pH step, (iii) micellar methods, and (iv) transient ITP. This contribution is a continuation of our previous reviews on the topic and brings an overview of papers published during 2010-2012 and relevant to the mentioned principles (except the last one which is covered by another review in this issue).
- MeSH
- alkaloidy izolace a purifikace MeSH
- aminokyseliny izolace a purifikace MeSH
- analýza potravin MeSH
- chromatografie micelární elektrokinetická kapilární metody MeSH
- DNA chemie MeSH
- elektroforéza kapilární metody trendy MeSH
- elektroforéza metody MeSH
- koncentrace vodíkových iontů MeSH
- léčivé přípravky izolace a purifikace MeSH
- lidé MeSH
- limita detekce MeSH
- metylace DNA MeSH
- micely MeSH
- mikročipové analytické postupy metody MeSH
- tělesné tekutiny chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Sample stacking is of vital importance for analytical CE since it may bring the required sensitivity of analyses. A lot of new relevant papers are published every year and regular surveys seem to be very helpful for experts and practitioners. The contribution presented here is a continuation of a series of regularly published reviews on the topic and covers the last two years. It brings a survey of related literature organized, in accord with the main principle used in the procedure published, in the following mainstream sections: Kohlrausch adjustment of concentrations, pH step, micellar systems and combined techniques. Each part covers literature sorted according to the field of application as, e.g. clinical, pharmaceutical, food, environmental, etc.
Electrophoretic sample stacking comprises a group of capillary electrophoretic techniques where trace analytes from the sample are concentrated into a short zone (stack). This paper is a continuation of our previous reviews on the topic and brings a survey of more than 120 papers published approximately since the second quarter of 2016 till the first quarter of 2018. It is organized according to the particular stacking principles and includes chapters on concentration adjustment (Kohlrausch) stacking, on stacking techniques based on pH changes, on stacking in electrokinetic chromatography and on other stacking techniques. Where available, explicit information is given about the procedure, electrolyte(s) used, detector employed and sensitivity reached. Not reviewed are papers on transient isotachophoresis which are covered by another review in this issue.
The term "sample stacking" comprises a relatively broad spectrum of techniques that already form an almost inherent part of the methodology of CZE. Their principles are different but the effect is the same: concentration of a diluted analyte into a narrow zone and considerable increase of the method sensitivity. This review brings a survey of papers on electrophoretic sample stacking published approximately since the second quarter of 2014 till the first quarter of 2016. It is organized according to the principles of the stacking methods and includes chapters aimed at the concentration adjustment principle (Kohlrausch stacking), techniques based on pH changes, micellar methods, and other stacking techniques. Not reviewed are papers on transient ITP that are covered by another review in this issue.
- MeSH
- analýza potravin MeSH
- anorganické látky analýza krev moč MeSH
- biologické markery analýza MeSH
- elektroforéza kapilární metody MeSH
- extrakce kapalina-kapalina metody MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- micely MeSH
- nukleosidy analýza MeSH
- organické látky antagonisté a inhibitory krev moč MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Sample stacking is a general term for methods in CE which are used for on-line concentration of diluted analytes. During the stacking process, analytes present at low concentrations in a long injected sample zone are concentrated into a short zone (stack). The stacked analytes are then separated and individual zones are detected. Thus stacking provides better separation efficiency and detection sensitivity. Many papers have been published on stacking till now, various procedures have been described, and, many names have been proposed for stacking procedures utilizing the same principles. This contribution brings an easy and unified view on stacking, describes the basic principles utilized, makes a list of recognized operational principles and brings an overview of principal current procedures. Further, it surveys selected recent practical applications ordered according to their operational principles and includes the terms, nicknames, and acronyms used for these actual stacking procedures. This contribution may help both newcomers and experts in the field of CE to orient themselves in the already quite complex topic of sample stacking.
A sensitive capillary electrophoretic method with on-line sample preconcentration by large volume sample stacking has been developed for determination of the anti-microbial agent pentamidine. The separation is performed in a fused silica capillary coated with covalently bound hydroxypropyl cellulose, with an internal diameter of 50 μm and length of 31.5 cm; the background electrolyte was 100 mM acetic acid/Tris at pH 4.7. The stacking is tested using a model sample of 1 μM pentamidine dissolved in 25% infusion solution and 75% acidified acetonitrile. Stacking permits the injection of a sample zone with a length of 95% of the total capillary length to achieve an enhancing factor of 77 compared to low injection into 1.8% of the total capillary length, with simultaneous high separation efficiency of approximately 1 350 000 plates/m. Stacking is based on simultaneous application of a separation field and a hydrodynamic pressure to force the acetonitrile zone out of the capillary. This approach allows the determination of pentamidine in rat blood plasma using only 12.5 μL of plasma treated by the addition of acetonitrile in a ratio of 1:3 v/v. The attained LOD is 0.03 μM and the intra-day repeatability is 0.1% for the migration time and 1.0% for the peak area at the injection 28.3% of capillary length. The performed pharmacokinetic study with ten-second scanning of the blood reveals rapid dynamics of pentamidine in the arterial bloodstream, while the changes are much slower in the venous system.
- MeSH
- antiinfekční látky krev MeSH
- elektroforéza kapilární metody MeSH
- krysa rodu rattus MeSH
- limita detekce MeSH
- lineární modely MeSH
- pentamidin krev MeSH
- potkani Wistar MeSH
- reprodukovatelnost výsledků MeSH
- tlak MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Electrophoretic stacking is developed for sensitive determination of three zwitterionic antiepileptics, namely vigabatrin, pregabalin and gabapentin, in human serum. CE separation is performed in a 25 μm fused silica capillary covalently coated with the copolymer of acrylamide with 5% content of permanently charged 3-acrylamidopropyl trimethylammonium chloride (PAMAPTAC). In background electrolyte of 500 mM acetic acid, the 5% PAMAPTAC generates an anodic electro-osmotic flow with a magnitude of (-18.6 ± 0.5) · 10-9 m2V-1s-1, which acts against the direction of the electrophoretic migration of the analytes. A sample of the antiepileptic prepared in a 25% v/v infusion solution and 75% v/v acetonitrile is injected into the capillary in a large volume attaining a zone length of up to 270 mm. After turning on the separation voltage, the antiepileptics are isotachophoretically focussed behind the zone of Na+ ions with a sensitivity enhancement factor of 78. For the clinical determination of antiepileptics, the human serum is diluted with acetonitrile in a ratio of 1:3 v/v and a zone with a length of 90 mm is injected into the capillary. The method is linear in the 0.025-2.5 μg/mL concentration range; the attained limit of quantification is in the range 18.3-22.8 nmol/L; the within-day precision for the migration time is 0.8-1.2% and for the peak area 1.5-2.4%.
- MeSH
- antikonvulziva * MeSH
- chloridy * MeSH
- elektroforéza kapilární MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH