The synthesis and chromatographic evaluation of a series of new Cinchona derived chiral weak anion exchangers is presented. Huisgen Cu(I) mediated alkyne-azide cycloaddition, so-called click chemistry, was used as an immobilization strategy. In this way it was possible to immobilize about 90% of offered selector via 1,2,3-triazole linker, which displays a more efficient way of binding the selector to modified silica compared to common radical mediated thiol-ene addition. Problems associated with potential radical scavenging properties of chiral selectors thereby could be circumvented. The evaluation of the synthesized chiral stationary phases regarding chromatographic behavior was carried out using polar organic mode mobile phase composition and a set of representative chiral organic acids. Different loading densities revealed an optimum selector density of about 310μmol/g chiral stationary phase with respect to resolution and selectivity. A decrease of performance was observed for higher loading, indicating mutual spatial influence of selector units leading to sterical hindrance. In addition, we observed that the effect of free azide groups on retention is negligible and the overall chromatographic behavior is comparable to other Cinchona derived chiral stationary phases.
- MeSH
- Alkynes chemistry MeSH
- Amino Acids chemistry MeSH
- Azides chemistry MeSH
- Quinidine analogs & derivatives chemical synthesis chemistry MeSH
- Quinine analogs & derivatives chemical synthesis chemistry MeSH
- Chromatography MeSH
- Click Chemistry MeSH
- Cycloaddition Reaction MeSH
- Ion Exchange MeSH
- Carbamates chemical synthesis chemistry MeSH
- Silicon Dioxide MeSH
- Stereoisomerism MeSH
- Publication type
- Journal Article MeSH
The rise of CuI-catalyzed click chemistry has initiated an increased demand for azido and alkyne derivatives of amino acid as precursors for the synthesis of clicked peptides. However, the use of azido and alkyne amino acids in peptide chemistry is complicated by their high cost. For this reason, we investigated the possibility of the in-house preparation of a set of five Fmoc azido amino acids: β-azido l-alanine and d-alanine, γ-azido l-homoalanine, δ-azido l-ornithine and ω-azido l-lysine. We investigated several reaction pathways described in the literature, suggested several improvements and proposed several alternative routes for the synthesis of these compounds in high purity. Here, we demonstrate that multigram quantities of these Fmoc azido amino acids can be prepared within a week or two and at user-friendly costs. We also incorporated these azido amino acids into several model tripeptides, and we observed the formation of a new elimination product of the azido moiety upon conditions of prolonged couplings with 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate/DIPEA. We hope that our detailed synthetic protocols will inspire some peptide chemists to prepare these Fmoc azido acids in their laboratories and will assist them in avoiding the too extensive costs of azidopeptide syntheses. Experimental procedures and/or analytical data for compounds 3-5, 20, 25, 26, 30 and 43-47 are provided in the supporting information. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.
- MeSH
- Alkynes chemistry MeSH
- Amino Acids chemical synthesis MeSH
- Azides chemistry MeSH
- Click Chemistry methods MeSH
- Ethylamines chemistry MeSH
- Fluorenes chemical synthesis chemistry MeSH
- Urea analogs & derivatives chemistry MeSH
- Peptides chemical synthesis MeSH
- Triazoles chemistry MeSH
- Publication type
- Journal Article MeSH
The increasing popularity of peptides as promising molecular scaffolds for biomedical applications and as valuable biochemical probes makes new methods allowing for their modification highly desirable. We describe herein an optimized protocol based on a sequence of CuAAC click reactions and selective deprotection steps, which leads to an efficient multi-functionalization of synthetic peptides. The methodology has been successfully applied to the construction of defined heteroglycopeptides and fluorophore-quencher-containing probes for proteases. The developed chemistry thus represents an important addition to the available toolbox of methods enabling efficient postsynthetic modification of peptides. The commercial availability of numerous azide probes further greatly extends the application potential of the described methodology.
Addition of lithiated methoxyallene to aziridine derivatives provided the expected primary addition products. The less substituted carbon of the aziridine ring was attacked selectively. The primary adducts could be converted to enantiopure piperidine derivatives or ß-amino acid derivatives. The unexpected reactions lead to a tricyclic sulfonamide and to alkynyl-substituted aminoethers. The efficient two-step conversion of a piperidone derivative to a benzomorphan demonstrates the potential of this approach to biologically active compounds.
Combining different antimicrobial agents has emerged as a promising strategy to enhance efficacy and address resistance evolution. In this study, we investigated the synergistic antimicrobial effect of a cationic biobased polymer and the antimicrobial peptide (AMP) temporin L, with the goal of developing multifunctional electrospun fibers for potential biomedical applications, particularly in wound dressing. A clickable polymer with pendent alkyne groups was synthesized by using a biobased itaconic acid building block. Subsequently, the polymer was functionalized through click chemistry with thiazolium groups derived from vitamin B1 (PTTIQ), as well as a combination of thiazolium and AMP temporin L, resulting in a conjugate polymer-peptide (PTTIQ-AMP). The individual and combined effects of the cationic PTTIQ, Temporin L, and PTTIQ-AMP were evaluated against Gram-positive and Gram-negative bacteria as well as Candida species. The results demonstrated that most combinations exhibited an indifferent effect, whereas the covalently conjugated PTTIQ-AMP displayed an antagonistic effect, potentially attributed to the aggregation process. Both antimicrobial compounds, PTTIQ and temporin L, were incorporated into poly(lactic acid) electrospun fibers using the supercritical solvent impregnation method. This approach yielded fibers with improved antibacterial performance, as a result of the potent activity exerted by the AMP and the nonleaching nature of the cationic polymer, thereby enhancing long-term effectiveness.