eccentricity effect
Dotaz
Zobrazit nápovědu
This study aimed to investigate the effects of performing either eccentric-only (ECC) or eccentric-concentric (ECC-CON) back squats (BS) with a supramaximal load on countermovement jump (CMJ) performance. Changes in front thigh skin surface temperature and mechanical properties (oscillation frequency and stiffness) of the vastus lateralis were also examined. Fourteen male powerlifters participated in this study (age: 22.5 ± 2.3 years, body weight: 84.2 ± 11.1 kg, height: 178 ± 7 cm, training experience: 5.4 ± 1.6 years, BS one-repetition maximum [1RM]: 177 ± 22.8 kg). The experimental sessions included 2 sets of 2 BS at 110% 1RM of either ECC-CON (load distributed by half on the barbell [55%] and on weight releasers [55%]) or ECC (only eccentric phase of BS) and CTRL with no CA applied. CMJ performance, mechanical properties, and skin surface temperature were measured before and at the third, sixth, ninth, and 12th min. After each protocol, only the ECC-CON condition led to a significant increase in CMJ height after individual optimal rest time compared to pre-CA (38.1 ± 5.2 vs. 39.8 ± 5.0 cm; p = 0.003; effect size [ES] = 0.32; Δ = 4.9 ± 5.0%) with a significant rise in skin surface temperature (32.98 ± 1.24 vs. 33.69 ± 0.96°C; p = 0.006; ES = 0.62; Δ = 2.2 ± 2.6%) and no significant changes in mechanical properties of the vastus lateralis. The ECC-CON condition led to a significant acute improvement in CMJ height and an increase in front thigh skin surface temperature among powerlifters. The ECC-CON supramaximal lower limb PAPE protocol should be effectively used among males representing high levels of lower limb muscle strength (>2 × body mass).
- MeSH
- biomechanika MeSH
- čtyřhlavý sval stehenní fyziologie MeSH
- dospělí MeSH
- kosterní svaly fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- odporový trénink MeSH
- sportovní výkon * fyziologie MeSH
- stehno fyziologie MeSH
- svalová síla fyziologie MeSH
- teplota kůže * fyziologie MeSH
- vzpírání * fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Objectives: The relationship between the isokinetic maximal strength of internal or external shoulder rotation and serve speed in tennis is well established, yet the influence of segmental mass, height, and high-speed shoulder rotation strength on serve performance in junior players remains unclear. This study aimed to investigate the relationship between concentric or eccentric isokinetic shoulder strength, segmental mass, height, and first-serve speed aimed at the T-target zone. Methods: Fifteen male junior competitive tennis players (mean ± SD: age 15.9 ± 0.9 years; height: 180.1 ± 7.2 cm; body mass: 66.1 ± 5.7 kg) were assessed for maximal isokinetic strength during concentric and eccentric internal and external shoulder rotations. Segmental mass (arm, leg, and trunk) was measured using dual-energy X-ray absorptiometry, and serve speed was recorded using a radar gun. Results: Concentric shoulder rotations at 210°/s demonstrated significant positive correlations with serve speed for both external (ρ = 0.71, p ≤ 0.01) and internal rotation (ρ = 0.61, p ≤ 0.05). Although lean arm mass partially mediated the relationship between shoulder strength and serve speed (indirect effect = 0.502, 95% CI: -0.156 to 1.145), this mediation effect was not statistically significant. Height was moderately correlated with serve speed (ρ = 0.68, p ≤ 0.01) but did not moderate the relationship between shoulder strength and serve speed. Conclusions: Concentric shoulder strength at higher angular velocities and segmental mass contribute to serve speed in junior tennis players. While height provides structural advantages, strength and lean mass play important roles, emphasizing the need for targeted training programs.
- Publikační typ
- časopisecké články MeSH
Chae, S, McDowell, KW, Baur, ML, Long, SA, Tufano, JJ, and Stone, MH. Accentuated eccentric loading and alternative set structures: A narrative review for potential synergies in resistance training. J Strength Cond Res 38(11): 1987-2000, 2024-As athletes become adapted to training over time, it becomes more difficult to develop their strength and power. In a conventional resistance training strategy, volume or load may be increased to provide novel stimuli to break through a plateau. However, physiological stress markers increase with increased volume or load, which is an innate shortcoming. In that case, practitioners strive to develop unconventional strategies that could increase training stimuli while adjusting fatigue. Two programming tactics, accentuated eccentric loading (AEL) using eccentric overload and alternative set structures (AS) using intraset rests, have been reported to increase training stimuli and alleviate fatigue, respectively. Importantly, when merging AEL and AS in various contexts, the 2 benefits could be accomplished together. Because AEL and AS cause different outcomes, it is important to deal with when and how they may be integrated into periodization. Moreover, prescribing eccentric overload and intraset rests requires logistical considerations that need to be addressed. This review discusses the scientific and practical aspects of AEL and AS to further optimize strength and power adaptations. This review discusses (a) scientific evidence as to which tactic is effective for a certain block, (b) potential practical applications, and (c) related discussions and future research directions.
- MeSH
- kosterní svaly fyziologie MeSH
- lidé MeSH
- odporový trénink * metody MeSH
- sportovci MeSH
- sportovní výkon fyziologie MeSH
- svalová síla * fyziologie MeSH
- svalová únava fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
All anthracyclines, including doxorubicin (DOXO), the most common and still indispensable drug, exhibit cardiotoxicity with inherent risk of irreversible cardiomyopathy leading to heart failure with reduced ejection fraction (HFrEF). Current pharmacological strategies are clearly less effective for this type of HFrEF, hence an urgent need for new therapeutic approaches. The prerequisite for success is thorough understanding of pathophysiology of this HFrEF form, which requires an appropriate animal model of the disease. The aim of this study was to comprehensively characterise a novel model of HF with cardiorenal syndrome, i.e. DOXO-induced HFrEF with nephrotic syndrome, in which DOXO was administered to Ren-2 transgenic rats (TGR) via five intravenous injections in a cumulative dose of 10 mg/kg of body weight (BW). Our analysis included survival, echocardiography, as well as histological examination of the heart and kidneys, blood pressure, but also a broad spectrum of biomarkers to evaluate cardiac remodelling, fibrosis, apoptosis, oxidative stress and more. We have shown that the new model adequately mimics the cardiac remodelling described as "eccentric chamber atrophy" and myocardial damage typical for DOXO-related cardiotoxicity, without major damage of the peritoneum, lungs and liver. This pattern corresponds well to a clinical situation of cancer patients receiving anthracyclines, where HF develops with some delay after the anticancer therapy. Therefore, this study may serve as a comprehensive reference for all types of research on DOXO-related cardiotoxicity, proving especially useful in the search for new therapeutic strategies.
- MeSH
- doxorubicin * škodlivé účinky MeSH
- krysa rodu rattus MeSH
- ledviny účinky léků patofyziologie MeSH
- modely nemocí na zvířatech * MeSH
- nefrotický syndrom * chemicky indukované farmakoterapie patofyziologie MeSH
- oxidační stres účinky léků MeSH
- potkani transgenní * MeSH
- protinádorová antibiotika škodlivé účinky MeSH
- srdeční selhání * chemicky indukované patofyziologie MeSH
- tepový objem * účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: High-velocity concentric actions can be negatively impacted by cumulative fatigue during plyometric training. Reducing vertical ground reaction forces (GRF) upon landing could decrease eccentric demands, potentially minimizing fatigue, maintaining concentric performance, and benefiting concentric training adaptations. Therefore, this study examined the effect of intentionally higher and lower landing vertical GRF on the ability to sustain concentric jumping performance. METHODS: Twenty men (25.2±3.5 years) performed 30 maximal effort jumps over a 50 cm hurdle (high-landing GRF) and onto a 50 cm box (low-landing GRF), on two separate occasions in a counter-balanced order. Jumps were measured using two force platforms (one for takeoff and one for landing) and a linear position transducer. The 30 jumps were divided into 5 groups of 6 repetitions, and the mean value for each group was analyzed. RESULTS: There was no significant condition × repetition group interaction for any parameters, indicating that the greater landing GRF during hurdle jumps did not negatively affect concentric jump performance throughout the 30 jumps. Concentric velocities and jump height were significantly greater during box jumps compared to hurdle jumps. CONCLUSIONS: Thirty maximal-effort jumps did not cause fatigue-related decrease of performance, independent of jump type (i.e., the magnitude of landing GRF). Although, reduced vertical GRF upon landing appears to have a neutral-to-positive effect on concentric jumping performance. Therefore, reducing landing GRF, such as by using BJs, could acutely augment jumping performance and help to reduce cumulative training load.
- MeSH
- biomechanika MeSH
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- plyometrická cvičení * MeSH
- sportovní výkon * fyziologie MeSH
- svalová únava fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
While phosphodiesterase-5 inhibition (PED5i) may prevent hypertrophy and failure in pressure-overloaded heart in an experimental model, the impact of PDE5i on volume-overload (VO)-induced hypertrophy is unknown. It is also unclear whether the hypertrophied right ventricle (RV) and left ventricle (LV) differ in their responsiveness to long-term PDE5i and if this therapy affects renal function. The goal of this study was to elucidate the effect of PDE5i treatment in VO due to aorto-caval fistula (ACF) and to compare PDE5i treatment with standard heart failure (HF) therapy with angiotensin-converting enzyme inhibitor (ACEi). ACF/sham procedure was performed on male HanSD rats aged 8 weeks. ACF animals were randomized for PDE5i sildenafil, ACEi trandolapril, or placebo treatments. After 20 weeks, RV and LV function (echocardiography, pressure-volume analysis), myocardial gene expression, and renal function were studied. Separate rat cohorts served for survival analysis. ACF led to biventricular eccentric hypertrophy (LV: +68%, RV: +145%), increased stroke work (LV: 3.6-fold, RV: 6.7-fold), and reduced load-independent systolic function (PRSW, LV: -54%, RV: -51%). Both ACF ventricles exhibited upregulation of the genes of myocardial stress and glucose metabolism. ACEi but not PDE5i attenuated pulmonary congestion, LV remodeling, albuminuria, and improved survival (median survival in ACF/ACEi was 41 weeks vs. 35 weeks in ACF/placebo, p = .02). PDE5i increased cyclic guanosine monophosphate levels in the lungs, but not in the RV, LV, or kidney. PDE5i did not improve survival rate and cardiac and renal function in ACF rats, in contrast to ACEi. VO-induced HF is not responsive to PDE5i therapy.
- MeSH
- inhibitory ACE * farmakologie MeSH
- inhibitory fosfodiesterasy 5 * farmakologie MeSH
- kardiomegalie farmakoterapie MeSH
- krysa rodu rattus MeSH
- remodelace komor * MeSH
- srdeční selhání * farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The phenomenon of post-activation performance enhancement plays an unidentified role in movement eccentric speed and individual muscle group responses. Therefore, this study aimed to determine whether the loaded front squat (FSq) speed of the eccentric phase would influence the post-activation performance enhancement effect and whether the FSq would elicit similar performance enhancement of knee flexion, knee extension, hip flexion, and hip extension muscles. Twenty resistance-trained handball players performed the FSq under maximum eccentric-concentric speed and 2-s eccentric speed (only the eccentric phase performed), while pre- and post-front squat countermovement jump, knee, and hip isokinetic flexion/extension performance were tested. The FSq conditioning activity was performed in a single set of three repetitions with either 90% (maximum eccentric-concentric speed) or 120% (2-s eccentric speed) of one repetition maximum, and post-performance was measured 4-12 min after the FSq. Athletes randomly changed the FSq eccentric speed and tested the hip or knee isokinetic flexion/extension strength at 180°/s. ANOVA showed that the rate of force development during the jump increased (Cohen d = 0.59-0.77) with no differences between 2-s eccentric and maximum speed eccentric protocols. Isokinetic strength increased after the 2-s eccentric FSq in hip extension (d = 0.76-0.86), knee flexion (d = 0.74-0.88), and hip flexion (d = 0.82), with no differences in knee extension strength. After maximum eccentric-concentric speed, isokinetic strength increased in hip extension (d = 1.25). In conclusion, the FSq conditioning activity enhances hip extensors' performance more than knee extensors' performance. Different eccentric types of muscle action during a conditioning activity alter the level of local muscle enhancement.
- Publikační typ
- časopisecké články MeSH
Kolinger D, Stastny P, Pisz A, Krzysztofik M, Wilk M, Tsoukos A, and Bogdanis GC. High-intensity conditioning activity causes localized postactivation performance enhancement and nonlocalized performance reduction. J Strength Cond Res 38(1): e1-e7, 2024-This study aimed to examine whether a conditioning activity (CA) performed by the legs (barbell back squat) may cause postactivation performance enhancement (PAPE) on muscle groups other than leg extensors in isokinetic (eccentric [ECC] and concentric [CON]) and dynamic movement. Twelve male basketball players (age: 21.3 ± 3.2, body mass: 89.6 ± 14.1 kg, height: 187.4 ± 4.6 cm, and 1 repetition maximum (1RM) barbell back squat: 113 ± 21 kg) with previous resistance-training experience of at least 2 years, performed 3 sets of 3-4 repetitions of back-squats with submaximal load (60, 90, and 90% 1RM) as CA. Before and after the CA, they performed pretest and post-test in the form of countermovement jumps (CMJs) (localized) or explosive push-ups (EPUs) (nonlocalized) along with isokinetic flexion and extension at the knee (localized) or at the elbow (nonlocalized). The localized and nonlocalized protocols were divided into 2 days in a randomized order. The back squat as CA significantly increased peak torque (PT) (p < 0.05) in all CON and ECC muscle actions and average power per repetition (APPR) (p < 0.05) (all muscle actions except ECC flexion) of the localized isokinetic tests with large (>0.8) and medium (0.4-0.79) effect sizes and significantly decreased (p < 0.01) the PT and APPR (p < 0.01) of the nonlocalized isokinetic test in the ECC flexion. The CMJ and EPU tests showed no significant differences (p > 0.05) between premeasures and postmeasures of take-off height. The effect of PAPE seems to be specific to the muscles most involved in the CA, and the CA inhibits PT of subsequent muscle ECC contractions in muscles not involved in the CA.
- MeSH
- dospělí MeSH
- kolenní kloub MeSH
- koleno MeSH
- kosterní svaly fyziologie MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- odporový trénink * metody MeSH
- svalová síla * fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Knowledge about the acute effects of supramaximal-loaded resistance exercises on muscle mechanical properties is scarce. Therefore, this study aimed to examine changes in dominant limb biceps femoris and vastus lateralis oscillation frequency and stiffness before and after high- and supramaximal-loaded front squats. Nineteen male handball players participated in the experimental session with a barbell front squat 1RM. The first set was performed at 70% of the 1RM for four repetitions, and the second and third sets were performed at 90%1RM in an eccentric-concentric or an eccentric-only manner at 120% of the 1RM for three repetitions. The handheld myometer was used for the measurement of the biceps femoris and vastus lateralis stiffness and the oscillation frequency of the dominant limb 5 min before and at the 5th and 10th min after front squats. A two-way ANOVA neither indicated a statistically significant interaction (p = 0.335; η2 = 0.059 and p = 0.103; η2 = 0.118), the main effect of a condition (p = 0.124; η2 = 0.126 and p = 0.197; η2 = 0.091), nor the main effect of the time point (p = 0.314; η2 = 0.06 and p = 0.196; η2 = 0.089) for vastus lateralis and biceps femoris stiffness. However, there was a statistically significant interaction (F = 3.516; p = 0.04; η2 = 0.163) for vastus lateralis oscillation frequency. The post hoc analysis showed a significantly higher vastus lateralis oscillation frequency at POST (p = 0.037; d = 0.29) and POST_10 (p = 0.02; d = 0.29) compared to PRE during the SUPRA condition. Moreover, Friedman's test indicated statistically significant differences in biceps femoris oscillation frequency (test = 15.482; p = 0.008; Kendall's W = 0.163). Pairwise comparison showed a significantly lower biceps femoris oscillation frequency in POST (p = 0.042; d = 0.31) and POST_10 (p = 0.015; d = 0.2) during the HIGH condition compared to that in the corresponding time points during the SUPRA condition. The results of this study indicate that the SUPRA front squats, compared to the high-loaded ones, cause a significant increase in biceps femoris and vastus lateralis oscillation frequency.
- Publikační typ
- časopisecké články MeSH
Ball throwing velocity is essential for scoring goals in handball; the crucial question is how to develop throwing velocity in highly trained handball players. Therefore, this systematic review aims to summarize effective conditioning strategies to improve throwing velocity in elite male players and to perform a meta-analysis on which training system can provide the highest increase in throwing velocity. The literature was analyzed using the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) in PubMed, Scopus, and Web of Science. Thirteen studies (sample n = 174) were included: five resistance training studies, one core training study, one study on repeated shuffle sprint training with small-sided games, and one on eccentric overload training. Effect size comparison showed that resistance training is the most effective strategy for improving throwing velocity in elite handball players (d > 0.7). Core training showed a small effect (d = 0.35). Small-sided game (SSG) training showed different results, from a significant positive effect (d = 1.95) to a negative effect (d = -2.03), and eccentric overload training showed a negative effect (d = -0.15). Resistance training is the most effective strategy for improving throwing velocity in elite handball players, while core training and SSGs can improve throwing velocity in youth athletes. Due to the small number of studies focusing on elite handball players, there is a need for more studies on advanced resistance training methods, e.g., contrast, complex, ballistic training, because much greater demands are placed on handball performance assumptions.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH