nanocoating Dotaz Zobrazit nápovědu
Background: Our study focuses on the fabrication of appropriate scaffolds for skin wound healing. This research brings valuable insights into the molecular mechanisms of adhesion, proliferation, and control of cell behavior through the extracellular matrix represented by synthetic biodegradable nanofibrous membranes coated by biomolecules. Methods: Nanofibrous polylactic acid (PLA) membranes were prepared by a needle-less electrospinning technology. These membranes were coated with fibrin according to two preparation protocols, and additionally they were coated with fibronectin in order to increase the cell affinity for colonizing the PLA membranes. The adhesion, growth, and extracellular matrix protein production of neonatal human dermal fibroblasts were evaluated on the nanofibrous membranes. Results: Our results showed that fibrin-coated membranes improved the adhesion and proliferation of human dermal fibroblasts. The morphology of the fibrin nanocoating seems to be crucial for the adhesion of fibroblasts, and consequently for their phenotypic maturation. Fibrin either covered the individual fibers in the membrane (F1 nanocoating), or covered the individual fibers and also formed a fine homogeneous nanofibrous mesh on the surface of the membrane (F2 nanocoating), depending on the mode of fibrin preparation. The fibroblasts on the membranes with the F1 nanocoating remained in their typical spindle-like shape. However, the cells on the F2 nanocoating were spread mostly in a polygon-like shape, and their proliferation was significantly higher. Fibronectin formed an additional mesh attached to the surface of the fibrin mesh, and further enhanced the cell adhesion and growth. The relative gene expression and protein production of collagen I and fibronectin were higher on the F2 nanocoating than on the F1 nanocoating. Conclusion: A PLA membrane coated with a homogeneous fibrin mesh seems to be promising for the construction of temporary full-thickness skin tissue substitutes.
- MeSH
- buněčná adheze fyziologie MeSH
- buněčné kultury přístrojové vybavení metody MeSH
- extracelulární matrix metabolismus MeSH
- fibrin chemie farmakologie MeSH
- fibroblasty cytologie účinky léků MeSH
- fibronektiny metabolismus MeSH
- kolagen typu I metabolismus MeSH
- kultivované buňky MeSH
- kůže cytologie MeSH
- lidé MeSH
- membrány umělé MeSH
- nanostruktury chemie MeSH
- nanotechnologie metody MeSH
- polyestery chemie MeSH
- proliferace buněk fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Prosthetic joint infection (PJI) is a feared complication of total joint arthroplasty associated with increased morbidity and mortality. There is a growing body of evidence that bacterial colonization and biofilm formation are critical pathogenic events in PJI. Thus, the choice of biomaterials for implanted prostheses and their surface modifications may significantly influence the development of PJI. Currently, silver nanoparticle (AgNP) technology is receiving much interest in the field of orthopaedics for its antimicrobial properties and a strong anti-biofilm potential. The great advantage of AgNP surface modification is a minimal release of active substances into the surrounding tissue and a long period of effectiveness. As a result, a controlled release of AgNPs could ensure antibacterial protection throughout the life of the implant. Moreover, the antibacterial effect of AgNPs may be strengthened in combination with conventional antibiotics and other antimicrobial agents. Here, our main attention is devoted to general guidelines for the design of antibacterial biomaterials protected by AgNPs, its benefits, side effects and future perspectives in PJI prevention.
- MeSH
- antibakteriální látky terapeutické užití MeSH
- biofilmy MeSH
- biokompatibilní materiály škodlivé účinky MeSH
- infekce spojené s protézou * prevence a kontrola MeSH
- lidé MeSH
- nanočástice terapeutické užití MeSH
- protézy kloubů škodlivé účinky MeSH
- sloučeniny stříbra * terapeutické užití MeSH
- techniky in vitro metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide-co-glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types.
- MeSH
- buněčná adheze MeSH
- extracelulární matrix metabolismus MeSH
- fibrin metabolismus MeSH
- fibroblasty cytologie metabolismus MeSH
- fibronektiny metabolismus MeSH
- keratinocyty cytologie metabolismus MeSH
- kolagen metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- nanovlákna chemie MeSH
- pevnost v tahu MeSH
- polymery chemie MeSH
- proliferace buněk MeSH
- tkáňové inženýrství MeSH
- tkáňové podpůrné struktury chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
To assist in overcoming the inherent instability of nucleic acid-containing polyplexes in physiological solutions, we have here set out to develop removable nanocoatings for modifying the surface of siRNA-based nanoparticles. Here, N-(2-hydroxypropyl)methacrylamide (HPMA) based copolymers containing carbonylthiazolidine-2-thione (TT) reactive groups in their side chains bound via disulfide spacers to the polymeric backbone were synthesized, and these copolymers were used to coat the surface of polyplexes formed by the self-assembly of anti-Luciferase siRNA with the polycations polyethylene imine (PEI) and poly(HPMA)-grafted poly(l-lysine) (GPL). The coating process was monitored by analyzing changes in the weight-average molecular weight (M(w)), the hydrodynamic radius (R(h)), and the zeta-potential (ζ) of the polyplexes, using both static (SLS) and dynamic (DLS) light scattering methods. The outlined methods resulted in the attachment of, on average, 28 polymer molecules to the surface of the polyplexes, forming a ∼5-nm-thick hydrophilic stealth coating. Initial efforts to develop RGD-targeted coated polyplexes are also described. Atomic force microscopy (AFM) showed an angular polyplex structure and confirmed the narrow size distribution of the coated nanoparticles. The stability of the polymer-coated and uncoated polyplexes was evaluated by gel electrophoresis and by turbidity measurements, and it was found that modifying the surface of the siRNA-containing polyplexes substantially improved their stability in physiological solutions. Using polymer-coated GPL-based polyplexes containing anti-Luciferase siRNA, we finally also obtained some initial proof-of-principle for time- and concentration-dependent target-specific gene silencing, suggesting that these systems hold significant potential for further in vitro and in vivo evaluation.
Fibrin plays an important role during wound healing and skin regeneration. It is often applied in clinical practice for treatment of skin injuries or as a component of skin substitutes. We prepared electrospun nanofibrous membranes made from poly(l-lactide) modified with a thin fibrin nanocoating. Fibrin surrounded the individual fibers in the membrane and also formed a thin fibrous mesh on several places on the membrane surface. The cell-free fibrin nanocoating remained stable in the cell culture medium for 14 days and did not change its morphology. On membranes populated with human dermal fibroblasts, the rate of fibrin degradation correlated with the degree of cell proliferation. The cell spreading, mitochondrial activity, and cell population density were significantly higher on membranes coated with fibrin than on nonmodified membranes, and this cell performance was further improved by the addition of ascorbic acid in the cell culture medium. Similarly, fibrin stimulated the expression and synthesis of collagen I in human dermal fibroblasts, and this effect was further enhanced by ascorbic acid. The expression of beta1-integrins was also improved by fibrin, and on pure polylactide membranes, it was slightly enhanced by ascorbic acid. In addition, ascorbic acid promoted deposition of collagen I in the form of a fibrous extracellular matrix. Thus, the combination of nanofibrous membranes with a fibrin nanocoating and ascorbic acid seems to be particularly advantageous for skin tissue engineering.
- MeSH
- buněčná diferenciace MeSH
- elektrochemie metody MeSH
- extracelulární matrix metabolismus MeSH
- fibrin chemie metabolismus MeSH
- fibroblasty cytologie metabolismus MeSH
- fluorescenční protilátková technika MeSH
- imunoenzymatické techniky MeSH
- kolagen genetika metabolismus MeSH
- kultivované buňky MeSH
- kůže cytologie metabolismus MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- nanovlákna chemie MeSH
- polyestery chemie MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- proliferace buněk MeSH
- regenerace fyziologie MeSH
- tkáňové inženýrství metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH