plant root functions
Dotaz
Zobrazit nápovědu
Activated cortical domains (ACDs) are regions of the plant cell cortex performing localized membrane turnover, delimited by concerted action of the cortical cytoskeleton and endomembrane compartments. Arabidopsis thaliana rhizodermis consists of two cell types differing by a single ACD (trichoblasts, carrying tip-growing root hairs, and hairless atrichoblasts), providing a model for the study of ACD determination. We compiled a set of genes specifically upregulated in root hairs from published transcriptome data, and compared it with a "virtual Arabidopsis root hair proteome", i.e. a list of computationally identified homologs of proteins from the published soybean root hair proteome. Both data sets were enriched in genes and proteins associated with root hairs in functional studies, but there was little overlap between the transcriptome and the proteome: the former captured gene products specific to root hairs, while the latter selected those abundant in root hairs but not necessarily specific to them. Decisive steps in ACD specification may be performed by signaling proteins of high expression specifity and low abundance. Nevertheless, 73 genes specifically transcribed in Arabidopsis trichoblasts or root hairs encode homologs of abundant root hair proteins from soybean. Most of them encode "housekeeping" proteins required for rapid tip growth. However, among the "candidates" is also a generative actin isoform, ACT11. Preliminary characterization of an act11 mutant allele indeed suggests a hitherto unexpected role for this gene in root and root hair development.
- MeSH
- Arabidopsis genetika metabolismus MeSH
- fenotyp MeSH
- kořeny rostlin genetika metabolismus MeSH
- mutace MeSH
- proteiny huseníčku metabolismus MeSH
- pyl metabolismus MeSH
- regulace genové exprese u rostlin fyziologie MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The cytokinin response factors (CRFs) are a group of related AP2/ERF transcription factors that are transcriptionally induced by cytokinin. Here we explore the role of the CRFs in Arabidopsis thaliana growth and development by analyzing lines with decreased and increased CRF function. While single crf mutations have no appreciable phenotypes, disruption of multiple CRFs results in larger rosettes, delayed leaf senescence, a smaller root apical meristem (RAM), reduced primary and lateral root growth, and, in etiolated seedlings, shorter hypocotyls. In contrast, overexpression of CRFs generally results in the opposite phenotypes. The crf1,2,5,6 quadruple mutant is embryo lethal, indicating that CRF function is essential for embryo development. Disruption of the CRFs results in partially insensitivity to cytokinin in a root elongation assay and affects the basal expression of a significant number of cytokinin-regulated genes, including the type-A ARRs, although it does not impair the cytokinin induction of the type-A ARRs. Genes encoding homeobox transcription factors are mis-expressed in the crf1,3,5,6 mutant, including STIMPY/WOX9 that is required for root and shoot apical meristem maintenance roots and which has previously been linked to cytokinin. These results indicate that the CRF transcription factors play important roles in multiple aspects of plant growth and development, in part through a complex interaction with cytokinin signaling.
- MeSH
- Arabidopsis genetika růst a vývoj fyziologie MeSH
- cytokininy metabolismus MeSH
- exprese genu MeSH
- fenotyp MeSH
- homeodoménové proteiny genetika metabolismus MeSH
- kořeny rostlin genetika růst a vývoj fyziologie MeSH
- meristém genetika růst a vývoj fyziologie MeSH
- mutace MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- semenáček genetika růst a vývoj fyziologie MeSH
- signální transdukce * MeSH
- transkripční faktory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Directional organ growth allows the plant root system to strategically cover its surroundings. Intercellular auxin transport is aligned with the gravity vector in the primary root tips, facilitating downward organ bending at the lower root flank. Here we show that cytokinin signaling functions as a lateral root specific anti-gravitropic component, promoting the radial distribution of the root system. We performed a genome-wide association study and reveal that signal peptide processing of Cytokinin Oxidase 2 (CKX2) affects its enzymatic activity and, thereby, determines the degradation of cytokinins in natural Arabidopsis thaliana accessions. Cytokinin signaling interferes with growth at the upper lateral root flank and thereby prevents downward bending. Our interdisciplinary approach proposes that two phytohormonal cues at opposite organ flanks counterbalance each other's negative impact on growth, suppressing organ growth towards gravity and allow for radial expansion of the root system.
- MeSH
- Arabidopsis fyziologie MeSH
- celogenomová asociační studie MeSH
- cytokininy metabolismus MeSH
- geneticky modifikované rostliny fyziologie MeSH
- genom rostlinný genetika MeSH
- gravitropismus MeSH
- kořeny rostlin metabolismus MeSH
- oxidoreduktasy genetika metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- proteolýza MeSH
- regulátory růstu rostlin metabolismus MeSH
- systémová biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIMS: The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions. METHODS: Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data. KEY RESULTS: The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase. CONCLUSIONS: The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem structure and maintenance; however, development of the epidermis and cortex are impaired.
- MeSH
- buněčná stěna metabolismus MeSH
- epidermis rostlin anatomie a histologie genetika růst a vývoj MeSH
- hydroponie MeSH
- kořeny rostlin cytologie genetika růst a vývoj MeSH
- kukuřice setá cytologie genetika růst a vývoj MeSH
- lignin metabolismus MeSH
- meristém cytologie genetika růst a vývoj MeSH
- mutace MeSH
- polyfenoly metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné proteiny genetika metabolismus MeSH
- semenáček cytologie genetika růst a vývoj MeSH
- výhonky rostlin cytologie genetika růst a vývoj MeSH
- vývojová regulace genové exprese MeSH
- životní prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.
Arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) form symbiotic relationships with plants influencing their productivity, diversity and ecosystem functions. Only a few studies on these fungi, however, have been conducted in extreme elevations and none over 5500 m a.s.l., although vascular plants occur up to 6150 m a.s.l. in the Himalayas. We quantified AMF and DSE in roots of 62 plant species from contrasting habitats along an elevational gradient (3400-6150 m) in the Himalayas using a combination of optical microscopy and next generation sequencing. We linked AMF and DSE communities with host plant evolutionary history, ecological preferences (elevation and habitat type) and functional traits. We detected AMF in elevations up to 5800 m, indicating it is more constrained by extreme conditions than the host plants, which ascend up to 6150 m. In contrast, DSE were found across the entire gradient up to 6150 m. AMF diversity was unimodally related to elevation and positively related to the intensity of AMF colonization. Mid-elevation steppe and alpine plants hosted more diverse AMF communities than plants from deserts and the subnival zone. Our results bring novel insights to the abiotic and biotic filters structuring AMF and DSE communities in the Himalayas.
- MeSH
- biodiverzita * MeSH
- endofyty klasifikace cytologie genetika fyziologie MeSH
- fylogeneze MeSH
- kořeny rostlin mikrobiologie MeSH
- mikroskopie MeSH
- mykorhiza klasifikace fyziologie MeSH
- nadmořská výška MeSH
- symbióza * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Indie MeSH
Arbuscular mycorrhizal (AM) fungi establish symbiotic associations with many plant species, transferring significant amounts of soil nutrients such as phosphorus to plants and receiving photosynthetically fixed carbon in return. Functioning of AM symbiosis is thus based on interaction between two living partners. The importance of dead AM fungal biomass (necromass) in ecosystem processes remains unclear. Here, we applied either living biomass or necromass (0.0004 potting substrate weight percent) of monoxenically produced AM fungus (Rhizophagus irregularis) into previously sterilized potting substrate planted with Andropogon gerardii. Plant biomass production significantly improved in both treatments as compared to non-amended controls. Living AM fungus, in contrast to the necromass, specifically improved plant acquisition of nutrients normally supplied to the plants by AM fungal networks, such as phosphorus and zinc. There was, however, no difference between the two amendment treatments with respect to plant uptake of other nutrients such as nitrogen and/or magnesium, indicating that the effect on plants of the AM fungal necromass was not primarily nutritional. Plant growth stimulation by the necromass could thus be either due to AM fungal metabolites directly affecting the plants, indirectly due to changes in soil/root microbiomes or due to physicochemical modifications of the potting substrate. In the necromass, we identified several potentially bioactive molecules. We also provide experimental evidence for significant differences in underground microbiomes depending on the amendment with living or dead AM fungal biomass. This research thus provides the first glimpse into possible mechanisms responsible for observed plant growth stimulation by the AM fungal necromass.
- MeSH
- Andropogon * MeSH
- biomasa MeSH
- Glomeromycota * MeSH
- kořeny rostlin MeSH
- mykorhiza * MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: When applied to a nutrition solution or agar media, the non-substituted aromatic cytokinins caused thickening and shortening of the primary root, had an inhibitory effect on lateral root branching, and even showed some negative effects on development of the aerial part at as low as a 10 nanomolar concentration. Novel analogues of aromatic cytokinins ranking among topolins substituted on N9-atom of adenine by tetrahydropyranyl or 4-chlorobutyl group have been prepared and tested in standardized cytokinin bioassays [1]. Those showing comparable activities with N(6)-benzylaminopurine were further tested in planta. METHODOLOGY/PRINCIPAL FINDINGS: The main aim of the study was to explain molecular mechanism of function of novel cytokinin derivatives on plant development. Precise quantification of cytokinin content and profiling of genes involved in cytokinin metabolism and perception in treated plants revealed several aspects of different action of m-methoxytopolin base and its substituted derivative on plant development. In contrast to standard cytokinins, N9- tetrahydropyranyl derivative of m-topolin and its methoxy-counterpart showed the negative effects on root development only at three orders of magnitude higher concentrations. Moreover, the methoxy-derivative demonstrates a positive effect on lateral root branching and leaf emerging in a nanomolar range of concentrations, in comparison with untreated plants. CONCLUSIONS/SIGNIFICANCE: Tetrahydropyranyl substitution at N9-position of cytokinin purine ring significantly enhances acropetal transport of a given cytokinins. Together with the methoxy-substitution, impedes accumulation of non-active cytokinin glucoside forms in roots, allows gradual release of the active base, and has a significant effect on the distribution and amount of endogenous isoprenoid cytokinins in different plant tissues. The utilization of novel aromatic cytokinin derivatives can distinctively improve expected hormonal effects in plant propagation techniques in the future.
- MeSH
- aktivace enzymů MeSH
- Arabidopsis účinky léků genetika růst a vývoj metabolismus MeSH
- biomasa MeSH
- cytokininy chemie farmakologie MeSH
- kořeny rostlin chemie účinky léků růst a vývoj MeSH
- kukuřice setá účinky léků genetika růst a vývoj metabolismus MeSH
- listy rostlin chemie účinky léků růst a vývoj MeSH
- oxidoreduktasy metabolismus MeSH
- proliferace buněk účinky léků MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin chemie farmakologie MeSH
- semenáček účinky léků MeSH
- stanovení celkové genové exprese MeSH
- xylém chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In nature, root systems of most terrestrial plants are protected from light exposure by growing in a dark soil environment. Hence, in vitro cultivation in transparent Petri dishes leads to physiological perturbations, but the mechanisms underlying root-mediated light perception and responses have not been fully elucidated. Thus, we compared Arabidopsis thaliana seedling development in transparent and darkened Petri dishes at low light intensity (20 µmol m(-2) s(-1)), allowing us to follow (inter alia) hypocotyl elongation, which is an excellent process for studying interactions of signals involved in the regulation of growth and developmental responses. To obtain insights into molecular events underlying differences in seedling growth under these two conditions, we employed liquid chromatography-mass spectrometry (LC-MS) shotgun proteomics (available via the PRIDE deposit PXD001612). In total, we quantified the relative abundances of peptides representing 1,209 proteins detected in all sample replicates of LC-MS analyses. Comparison of MS spectra after manual validation revealed 48 differentially expressed proteins. Functional classification, analysis of available gene expression data and literature searches revealed alterations associated with root illumination (inter alia) in autotrophic CO2 fixation, C compound and carbohydrate metabolism, and nitrogen metabolism. The results also indicate a previously unreported role for cytokinin plant hormones in the escape-tropism response to root illumination. We complemented these results with reverse transcription followed by quantitative PCR (RT-qPCR), chlorophyll fluorescence and detailed cytokinin signaling analyses, detecting in the latter a significant increase in the activity of the cytokinin two-component signaling cascade in roots and implicating the cytokinin receptor AHK3 as the major mediator of root to hypocotyl signaling in responses to root illumination.
- MeSH
- aktiny metabolismus MeSH
- Arabidopsis metabolismus účinky záření MeSH
- chromatografie kapalinová MeSH
- cytokininy metabolismus MeSH
- down regulace účinky záření MeSH
- fotosyntéza účinky záření MeSH
- hmotnostní spektrometrie MeSH
- hypokotyl anatomie a histologie účinky záření MeSH
- kořeny rostlin anatomie a histologie účinky záření MeSH
- proteom metabolismus MeSH
- proteomika MeSH
- rostlinné proteiny metabolismus MeSH
- signální transdukce * účinky záření MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Background and Aims: Selected beneficial Pseudomonas spp. strains have the ability to influence root architecture in Arabidopsis thaliana by inhibiting primary root elongation and promoting lateral root and root hair formation. A crucial role for auxin in this long-term (1week), long-distance plant-microbe interaction has been demonstrated. Methods: Arabidopsis seedlings were cultivated in vitro on vertical plates and inoculated with pathogenic strains Pseudomonas syringae pv. maculicola (Psm) and P. syringae pv. tomato DC3000 (Pst), as well as Agrobacterium tumefaciens (Atu) and Escherichia coli (Eco). Root hair lengths were measured after 24 and 48h of direct exposure to each bacterial strain. Several Arabidopsis mutants with impaired responses to pathogens, impaired ethylene perception and defects in the exocyst vesicle tethering complex that is involved in secretion were also analysed. Key Results: Arabidopsis seedling roots infected with Psm or Pst responded similarly to when infected with plant growth-promoting rhizobacteria; root hair growth was stimulated and primary root growth was inhibited. Other plant- and soil-adapted bacteria induced similar root hair responses. The most compromised root hair growth stimulation response was found for the knockout mutants exo70A1 and ein2. The single immune pathways dependent on salicylic acid, jasmonic acid and PAD4 are not directly involved in root hair growth stimulation; however, in the mutual cross-talk with ethylene, they indirectly modify the extent of the stimulation of root hair growth. The Flg22 peptide does not initiate root hair stimulation as intact bacteria do, but pretreatment with Flg22 prior to Psm inoculation abolished root hair growth stimulation in an FLS2 receptor kinase-dependent manner. These early response phenomena are not associated with changes in auxin levels, as monitored with the pDR5::GUS auxin reporter. Conclusions: Early stimulation of root hair growth is an effect of an unidentified component of living plant pathogenic bacteria. The root hair growth response is triggered in the range of hours after bacterial contact with roots and can be modulated by FLS2 signalling. Bacterial stimulation of root hair growth requires functional ethylene signalling and an efficient exocyst-dependent secretory machinery.
- MeSH
- Arabidopsis genetika růst a vývoj mikrobiologie MeSH
- genový knockout MeSH
- interakce hostitele a patogenu * MeSH
- kořeny rostlin růst a vývoj mikrobiologie MeSH
- mutace MeSH
- proteinkinasy genetika MeSH
- proteiny huseníčku genetika MeSH
- Pseudomonas syringae * MeSH
- receptory buněčného povrchu genetika MeSH
- regulace genové exprese u rostlin MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH