Sarcodon aspratus (Berk.) S. Ito is a Japanese local dish with unique aroma and is effective against allergic diseases. However, its cultivation was still difficult. Recently, coexisting bacteria were regarded as an important factor for mycelium growth and fruiting body formation. Therefore, we performed 16S rRNA amplicon sequencing in the fruiting body of S. aspratus and its adhered soil to understand the bacterial communities in the fruiting body of S. aspratus. The fruiting body group showed lower alpha diversities and a significant difference in the structure of bacterial communities compared to the soil group. In addition, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium had the highest relative abundance in the fruiting body group, and it was also a potential coexisting bacterium in the fruiting body of S. aspratus by linear discriminant analysis effect size (LEfSe) analysis. This highest relative abundance phenomenon in Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade was also found in the fruiting body of Cantharellus cibarius. These findings suggested that Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium plays a key role in the bacterial communities in the fruiting body of S. aspratus. Bacteria in the fruit bodies of S. aspratus and C. cibarius probably present a similar coexistence model.
- MeSH
- Bacteria * classification genetics isolation & purification MeSH
- Biodiversity MeSH
- DNA, Bacterial genetics MeSH
- Phylogeny * MeSH
- Microbiota MeSH
- Fruiting Bodies, Fungal * growth & development MeSH
- Soil Microbiology MeSH
- RNA, Ribosomal, 16S * genetics MeSH
- Sequence Analysis, DNA MeSH
- Publication type
- Journal Article MeSH
Phosphate-solubilising fungi (PSF) are beneficial microorganisms that play a pivotal role in plant growth by increasing the availability of phosphorus (P) in soil. Although phosphorus is an essential nutrient for plants, it often becomes inaccessible as it binds into insoluble forms. PSF effectively facilitate the release of this bound phosphorus through diverse mechanisms. Numerous fungal species demonstrate the ability to solubilise various types of phosphate compounds. Among the commonly researched PSF are Penicillium, Aspergillus, Rhizopus, Fusarium, Trichoderma, and Sclerotium. Moreover, yeasts such as Saccharomyces cerevisiae can potentially be leveraged as PSF. PSF secrete organic acids that chelate phosphate ions, thereby increasing their solubility in the soil. Moreover, PSF contribute to the decomposition of organic phosphorus compounds in soil by employing enzymes such as phosphatases, phytases, and phosphonatases. Furthermore, PSF can interact with other soil microorganisms, including nitrogen-fixing bacteria and arbuscular mycorrhizal fungi (AM-fungi), fostering synergistic effects that further enhance plant growth and nutrient absorption. The utilisation of PSF as biofertilisers offers numerous advantages over chemical fertilisers, including environmental friendliness, cost-effectiveness, and enhanced fertiliser utilisation efficiency. Furthermore, PSF can prove beneficial in challenging environments characterised by high phosphate sorption. Hence, this review serves as an updated study aimed at broadening the understanding of PSF and its potential applications in P solubilisation. This review also focuses on the diversity of PSF, the mechanisms underlying solubilisation, ecological roles of PSF in soil microbiome, and the benefits of sustainable agriculture. By delving into the ecological roles of PSF and their potential as biofertilisers, this study contributes to a deeper understanding of sustainable agriculture practices and addresses challenges in phosphate-scarce environments.
- MeSH
- Phosphates * metabolism MeSH
- Phosphorus metabolism MeSH
- Fungi * metabolism growth & development MeSH
- Mycorrhizae metabolism physiology MeSH
- Fertilizers * analysis MeSH
- Soil chemistry MeSH
- Soil Microbiology * MeSH
- Plant Development * MeSH
- Agriculture * methods MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The fungus Monascus is a well-known source of secondary metabolites with interesting pharmaceutical and nutraceutical applications. In particular, Monascus pigments possess a wide range of biological activities (e.g. antimicrobial, antioxidant, anti-inflammatory or antitumoral). To broaden the scope of their possible application, this study focused on testing Monascus pigment extracts as potential photosensitizing agents efficient in antimicrobial photodynamic therapy (aPDT) against bacteria. For this purpose, eight different extracts of secondary metabolites from the liquid- and solid-state fermentation of Monascus purpureus DBM 4360 and Monascus sp. DBM 4361 were tested against Gram-positive and Gram-negative model bacteria, Bacillus subtilis and Escherichia coli and further screened for ESKAPE pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. To the bacterial culture, increasing concentration of extracts was added and it was found that all extracts showed varying antimicrobial activity against Gram-positive bacteria in dark, which was further increased after irradiation. Gram-negative bacteria were tolerant to the extracts' exposure in the dark but sensitivity to almost all extracts that occurred after irradiation. The Monascus sp. DBM 4361 extracts seemed to be the best potential candidate for aPDT against Gram-positive bacteria, being efficient at low doses, i.e. the lowest total concentration of Monascus pigments exhibiting aPDT effect was 3.92 ± 1.36 mg/L for E. coli. Our results indicate that Monascus spp., forming monascuspiloin as the major yellow pigment and not-forming mycotoxin citrinin, is a promising source of antimicrobials and photoantimicrobials.
- MeSH
- Anti-Bacterial Agents * pharmacology chemistry MeSH
- Pigments, Biological pharmacology MeSH
- Biological Products pharmacology chemistry MeSH
- Photochemotherapy MeSH
- Photosensitizing Agents pharmacology chemistry MeSH
- Gram-Positive Bacteria drug effects radiation effects MeSH
- Complex Mixtures pharmacology chemistry MeSH
- Microbial Sensitivity Tests * MeSH
- Monascus * chemistry metabolism MeSH
- Mycelium * chemistry radiation effects drug effects MeSH
- Publication type
- Journal Article MeSH
- MeSH
- Fungi * physiology MeSH
- Mycelium MeSH
- Consciousness MeSH
- Publication type
- Newspaper Article MeSH
Pleurotus ostreatus was cultivated on a commercially available wheat straw substrate enriched with Zn and Se. Various amounts of Zn (10, 50, and 100 mg) and Se (1, 5, and 10 mg) in suitable forms ((CH3COO)2Zn·2H2O, Zn(NO3)2·6H2O, and Na2SeO3·5H2O, respectively) were dissolved in 50 ml of deionized water and homogenously nebulized into the substrate block of 2.4 kg weight. The increase in the Zn content in fruiting bodies cultivated on the enriched substrate was relatively low compared with fruiting bodies cultivated on the substrate with no addition at the first flush. The application of different Zn compounds (acetate vs. nitrate) gave similar results. However, the addition of 1 mg of Se into the cultivation substrate block increased the content of Se in fruiting bodies to about 3-6 mg/kg dry matter. This content was one order of magnitude higher compared with the Se content in fruiting bodies harvested from the substrate with no Se addition (< 0.12-0.58 mg/kg dry matter). In the case of the addition of 5 mg of Se, there was a further significant increase in the content of this element to about 40-60 mg/kg dry matter.
- MeSH
- Pleurotus * chemistry MeSH
- Fruiting Bodies, Fungal chemistry MeSH
- Triticum MeSH
- Selenium * analysis MeSH
- Zinc analysis MeSH
- Publication type
- Journal Article MeSH
Fuscoporia is a cosmopolitan, poroid, wood-decaying genus, belonging to the Hymenochaetales. During a study of wood-inhabiting fungi in the USA, four unknown specimens were collected from Hawaii. Both morphological criteria and molecular genetic analyses based on the ITS+nLSU+EF1-α datasets and the nLSU dataset confirmed that these four specimens represent two new species of Fuscoporia, and they are described as F. hawaiiana and F. minutissima. Fuscoporia hawaiiana is characterized by pileate basidiocarps, the absence of cystidioles, hooked hymenial setae, broadly ellipsoid to subglobose basidiospores measuring 4-6 × 3.5-4.5 μm. Fuscoporia minutissima is distinguished by small pores (10-13 per mm) and basidiospores (3.4-4 × 2.4-3 μm). The taxonomic status of the two new species is briefly discussed. A key to the North American species of Fuscoporia is provided.
- MeSH
- Basidiomycota * genetics MeSH
- DNA, Fungal genetics MeSH
- Phylogeny MeSH
- Sequence Analysis, DNA MeSH
- Spores, Fungal genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Hawaii MeSH
The pathogen Candida albicans is pleiomorphic and grows in yeast and filamentous forms but the relationship between the regulation of different filamentous forms is unclear. BRG1 encodes a DNA binding protein which is an important regulator of morphology. Mutants lacking BRG1 grow as yeast under all conditions tested and over-expressing BRG1 drives hyphal growth even in the absence of inducing signals. A number of genetic mutants in repressors of filamentation form pseudohyphae under yeast conditions and some of these mutants can form hyphae under hypha-inducing conditions. This study examines the position of BRG1 in the regulatory networks that govern filamentation by examining the effect of over-expressing BRG1 in pseudohyphal mutants.
Introduction: The present study aims to determine the contamination of eighteen samples from different nuts and dried fruits from the markets of Mosul and Duhok city.Materials and Methods: This study included samples of local and imported nuts and dried fruits.Results: The study showed different genera of contaminant fungi such as Alternaria, Penicillium, and Aspergillus species which are very common fungi associated with samples. The most fungal contamination was found in pistachio and black raisins, followed by balahsisi, taffy raisins, yellow raisins, dried apricot and peanut with shell. A total of nine species of Aspergillus were isolated on (potato dextrose agar, malt extract agar and dichloran rose bengal agar) media A. niger, A. flavus, A. fumigatus, A. tamarii, A. aculeatus, A. parasiticus, A. oryzae, A. japonicus, A. ochraceus were detected from all types of nuts and dried fruits samples. The most frequent species were A. niger followed by A. flavus and A. fumigates with percentage frequencies of 45.2%, 20.3% and 13.9% respectively. The ability of toxicogenic fungi to produce AflatoxinB1 by ELISA test of Sunlong corporation in nuts and dried fruits samples ranged from 94.8 to 136.4 μg/kg, with the highest levels of ability to produce AflatoxinB1 in nuts samples (peanut with shell, sunflower seeds and walnut) at levels 135.8, 129.0, and 128.9 μg/kg respectively, while in dried fruits samples the highest ability to produce AflatoxinB1in dried apricot, taffy raisins and yellow raisins was at levels136.4,123.1 and 118.0 μg/kg, respectively.Conclusion: we conducted the fungal contamination and quantitative content of aflatoxin B1 in nuts and dried fruits notably those sold openly in food shops.
Amanita muscaria is an ectomycorrhizal mushroom that commonly grows at metal-polluted sites. Sporocarps from the lead smelter-polluted area near Příbram (Central Bohemia, Czech Republic) showed elevated concentrations of Cd and Zn. Size exclusion chromatography of the cell extracts of the sporocarps from both polluted and unpolluted sites indicated that substantial part of intracellular Cd and Zn was sequestered in 6-kDa complexes, presumably with metallothionein(s) (MT). When the cultured mycelial isolates were compared, those from Příbram were more Cd-tolerant and accumulated slightly less Cd and Zn than those from the unpolluted site. The analysis of the available A.muscaria sequence data returned a 67-amino acid (AA) MT encoded by the AmMT1 gene. Weak Cd and Zn responsiveness of AmMT1 in the mycelia suggested its metal homeostasis function in A.muscaria, rather than a major role in detoxification. The AmMT1 belongs to a ubiquitous peptide group in the Agaricomycetes consisting of 60-70-AA MTs containing seven cysteinyl domains and a conserved histidyl, features observed also in a newly predicted, atypical 45-AA RaMT1 of the Zn-accumulator Russula bresadolae in which the C-terminal cysteinyl domains VI and VII are missing. Heterologous expression in metal-sensitive yeast mutants indicated that AmMT1 and RaMT1 encode functional peptides that can protect cells against Cd, Zn, and Cu toxicity. The metal protection phenotype observed in yeasts with mutant variants of AmMT1 and RaMT1 further indicated that the conserved histidyl seems to play a structural, not metal binding role, and the cysteinyls of the C-terminal domains VI and VII are important for Cu binding. The data provide an important insight into the metal handling of site-associated ectomycorrhizal species disturbed by excess metals and the properties of MTs common in Agaricomycetes.