Hydrocolloids are used in spreadable meat or poultry products to improve consistency, emulsion stability and water retention, resulting in products with desired functional and organoleptic properties. The scope of the work was to evaluate the addition of three divergent algal hydrocolloids (κ-carrageenan, ι-carrageenan, furcellaran) at four different concentrations (0.25, 0.50, 0.75, and 1.00% w/w) on the physicochemical, textural, rheological and organoleptic properties of model chicken liver pâté (CLP) samples. Overall, the highest hardness and viscoelastic moduli values of the CLP samples were reported when κ-carrageenan and furcellaran were utilized at a concentration of 0.75% w/w (p < 0.05). Furthermore, increasing the concentrations of the utilized hydrocolloids led to increase in the viscoelastic moduli and hardness values of CLP. Compared to the control sample, an increase in spreadability was reported in the CLP samples with the addition of hydrocolloids. Finally, the use of algal hydrocolloids proved to be an effective way to modify the techno-functional properties of CLP.
- Klíčová slova
- carrageenan, chicken liver pâté, furcellaran, textural properties, viscoelastic properties,
- Publikační typ
- časopisecké články MeSH
The application of biopolymer-based materials is increasing due to better sustainability and environmental protection properties. Gelatin fibers have a specific surface and high porosity, which is why their use in medicine and the food industry is being researched. This article explores the potential of centrifugal spinning to produce gelatin fibers. Gelatin for fiber preparation was obtained from a non-traditional source of collagen (chicken by-products) using a unique enzymatic process. The fiber quality was compared with those prepared from gelatins produced from traditional collagen tissues (porcine, bovine). The results showed that fibers cross-linked with glutaraldehyde vapor preserved their structure even in contact with water. Using a cross-linker controlled swelling ability and solubility while maintaining the fiber structure. On the contrary, uncross-linked gelatin fibers were water soluble due to a high surface-to-volume ratio, facilitating water penetration and dissolution. Scanning electron microscopy (SEM) provided a clearer picture of the morphology of gelatin fibers obtained by centrifugal spinning. Differences in the amount of bonding depending on the raw material used and the presence of a cross-linker were analyzed using Fourier transform infrared spectroscopy (FTIR). The overall results showed that chicken gelatin is a suitable alternative to gelatins from traditional sources and can be used for preparing food and pharmaceutical packaging and coatings, fibers, or bioprinting of 3D matrices.
- Klíčová slova
- bioprinting, centrifugal spinning, chicken gelatin, enzymatic hydrolysis, fibers, functional groups, morphology, solubility, swelling,
- Publikační typ
- časopisecké články MeSH
In most cases, the unused by-products of venison, including deer tallow, are disposed of in rendering plants. Deer tallow contains essential fatty acids and can be used to prepare products for everyday food and advanced applications. This work aimed to process deer tallow into hydrolyzed products using microbial lipases. A Taguchi design with three process factors at three levels was used to optimize the processing: amount of water (8, 16, 24%), amount of enzyme (2, 4, 6%), and reaction time (2, 4, 6 h). The conversion of the tallow to hydrolyzed products was expressed by the degree of hydrolysis. The oxidative stability of the prepared products was determined by the peroxide value and the free fatty acids by the acid value; further, color change, textural properties (hardness, spreadability, stickiness, and adhesiveness), and changes at the molecular level were observed by Fourier transform infrared spectroscopy (FTIR). The degree of hydrolysis was 11.8-49.6%; the peroxide value ranged from 12.3 to 29.5 µval/g, and the color change of the samples expressed by the change in the total color difference (∆E*) was 1.9-13.5. The conditions of enzymatic hydrolysis strongly influenced the textural properties: hardness 25-50 N, spreadability 20-40 N/s, and stickiness < 0.06 N. FTIR showed that there are changes at the molecular level manifested by a decrease in ester bonds. Enzymatically hydrolyzed deer tallow is suitable for preparing cosmetics and pharmaceutical matrices.
- Klíčová slova
- by-product, characterization, cosmetics matrices, deer tallow, hydrolysis, lipase, molecular research, novel applications, pharmacy, processing conditions,
- MeSH
- hydrolýza MeSH
- maso MeSH
- peroxidy MeSH
- tuky * MeSH
- vysoká zvěř * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peroxidy MeSH
- tallow MeSH Prohlížeč
- tuky * MeSH
Chicken collagen is a promising raw material source for the production gelatins and hydrolysates. These can be prepared biotechnologically using proteolytic enzymes. By choosing the appropriate process conditions, such changes can be achieved at the molecular level of collagen, making it possible to prepare gelatins with targeted properties for advanced cosmetic, pharmaceutical, medical, or food applications. The present research aims to investigate model samples of chicken gelatins, focusing on: (i) antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-3-etylbenzotiazolin-6-sulfonic acid (ABTS); (ii) the distribution of molecular weights via gel permeation chromatography with refractometric detection (GPC-RID); (iii) functional groups and the configuration of polypeptide chains related to molecular-level properties using Fourier transform infrared spectroscopy (FTIR); (iv) the microbiological populations on sabouraud dextrose agar (SDA), plate count agar (PCA), tryptic soy agar (TSA), and violet red bile lactose (VRBL) using the matrix-assisted laser desorption ionization (MALDI) method. Antioxidant activity towards ABTS radicals was more than 80%; activity towards DPPH radicals was more than 69%. The molecular weights of all gelatin samples showed typical α-, β-, and γ-chains. FTIR analysis confirmed that chicken gelatins all contain typical vibrational regions for collagen cleavage products, Amides A and B, and Amides I, II, and III, at characteristic wavenumbers. A microbiological analysis of the prepared samples showed no undesirable bacteria that would limit advanced applications of the prepared products. Chicken gelatins represent a promising alternative to products made from standard collagen tissues of terrestrial animals.
- Klíčová slova
- antioxidant activity, biotechnology, functional groups, gelatin, microbial population, molecular weight,
- MeSH
- agar MeSH
- amidy MeSH
- antioxidancia MeSH
- benzothiazoly * MeSH
- bifenylové sloučeniny * MeSH
- drůbež * MeSH
- kolagen MeSH
- kur domácí MeSH
- kyseliny sulfonové * MeSH
- želatina * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid MeSH Prohlížeč
- agar MeSH
- amidy MeSH
- antioxidancia MeSH
- benzothiazoly * MeSH
- bifenylové sloučeniny * MeSH
- biphenyl MeSH Prohlížeč
- kolagen MeSH
- kyseliny sulfonové * MeSH
- želatina * MeSH
Sous-vide is a process comprising vacuum-sealing food, heating it to the desired temperature, and circulating it in a water bath in a sous vide machine. This cooking technique is increasingly common in homes and catering establishments due to its simplicity and affordability. However, manufacturers and chef's recommendations for low-temperature and long-term sous-vide cooking in media raise food safety concerns, particularly when preparing beef tenderloin. In this study, Salmonella enterica was found to be inactivated by heat and sage essential oil (EO) in beef samples from musculus psoas major that had been sous vide processed. To determine whether heat treatment was likely to increase the sous vide efficiency, S. enterica and sage EO were mixed. After being vacuum-packed and injected with S. enterica, the samples were cooked at 50-65 °C through the sous vide technique for the prescribed time. On days 1, 3, and 6, the amounts of S. enterica, total bacteria, and coliform bacteria were measured in the control and treated groups of beef processed sous vide. Mass spectrometry was used to identify bacterial isolates on different days. On each day that was measured, a higher number of all the microbiota was found in the samples exposed to 50 °C for 5 min. The most frequently isolated microorganisms from both groups of samples were Pseudomonas fragi (17%), Pseudomonas cedrina (8%), and Proteus vulgaris (8%); in the treated group, also S. enterica (21%), Pseudomonas fragi (13%), and Pseudomonas veronii (6%). After the heat treatment of samples at 65 °C for 20 min, the total count of bacteria and coliform bacteria was zero. It has been shown that adding sage essential oil (EO) in combination with sous vide processing technique leads to the stabilization and safety of beef tenderloin.
- Klíčová slova
- active substance, beef tenderloin, foodborne pathogen, novel application, safety, sage essential oil, stabilization, under vacuum,
- Publikační typ
- časopisecké články MeSH
If food is contaminated with pathogens such as Listeria monocytogenes, improper cooking during sous-vide preparation can lead to foodborne illnesses. In this study, it was found that L. monocytogenes were inactivated with both heat and the essential oil of Salvia officinalis (sage EO) in beef tenderloin of the musculus psoas major that had undergone sous-vide processing. To determine whether the enhancement of the efficacy of heat treatment is prospective, L. monocytogenes and sage EO were mixed. Groups with L. monocytogenes alone and sage essential oil combined with L. monocytogenes and test groups without EO were established. The samples were vacuum-packed, inoculated with L. monocytogenes, and then cooked sous-vide for the predetermined duration at 50, 55, 60, or 65 °C. In both groups with sous-vide beef tenderloin, the total bacterial count, the coliforms bacterial count, and the amount of L. monocytogenes were assessed on days 0, 3, 6, 9, and 12. Over these days, the amounts of L. monocytogenes, coliform bacteria, and overall bacteria increased. The identification of bacterial strains in various days and categories was performed by MALDI-TOF mass spectrometry. The test group that was exposed to a temperature of 50 °C for 5 min had a higher overall bacterial count for each day that was assessed. Pseudomonas fragi and L. monocytogenes were the most isolated organisms from the test group and the treated group. To ensure the safety for the consumption of sous-vide beef tenderloin, it was found that the addition of natural antimicrobials could produce effective outcomes.
- Klíčová slova
- Listeria monocytogenes, Salvia officinalis essential oil, antimicrobial effect, beef tenderloin (m. psoas major), sous-vide,
- Publikační typ
- časopisecké články MeSH
Comedogenic skin care receives little attention compared to the care or treatment of more serious acne manifestations. Traditional therapies may have limited success with potential side effects. Cosmetic care supported by the effect of a biostimulating laser may offer a desirable alternative. The aim of the study was to evaluate the biological effectiveness of combined cosmetic treatment with lasotherapy on comedogenic skin type using noninvasive bioengineering methods. Twelve volunteers with comedogenic skin type underwent a 28-week application of Lasocare Basic 645® cosmetic gel containing Lactoperoxidase and Lactoferrin in combination with laser therapy (Lasocare® method). The effect of treatment on skin condition was monitored using noninvasive diagnostic methods. The parameters were the amount of sebum, the pore count, the ultraviolet-induced red fluorescence assessment of comedonic lesions (percentage of the area and quantification of orange-red spots), hydration, transepidermal water loss, and pH. A statistically significant decrease in sebum production was observed on the skin of the treated volunteers, as well as a decrease in porphyrins, indicating the presence of Cutibacterium acnes populating comedones and causing enlarged pores. The balance of epidermal water in the skin was regulated adjusting the acidity of the skin coat in individual zones, which decreased the presence of Cutibacterium acnes. Cosmetic treatment in combination with the Lasocare® method successfully improved the condition of comedogenic skin. In addition to transient erythema, there were no other adverse effects. The chosen procedure appears to be a suitable and safe alternative to traditional treatment procedures known from dermatological practice.
- Klíčová slova
- Cutibacterium acnes, comedone, cosmetics, gel, laser therapy, porphyrin, sebum, skin, skin diagnosis,
- Publikační typ
- časopisecké články MeSH
One of the biggest challenges faced by the meat industry is maintaining the freshness of meat while extending its shelf life. Advanced packaging systems and food preservation techniques are highly beneficial in this regard. However, the energy crisis and environmental pollution demand an economically feasible and environmentally sustainable preservation method. Emulsion coatings (ECs) are highly trending in the food packaging industry. Efficiently developed coatings can preserve food, increase nutritional composition, and control antioxidants' release simultaneously. However, their construction has many challenges, especially for meat. Therefore, the following review focuses on the essential aspects of developing ECs for meat. The study begins by classifying emulsions based on composition and particle size, followed by a discussion on the physical properties, such as ingredient separation, rheology, and thermal characteristics. Furthermore, it discusses the lipid and protein oxidation and antimicrobial characteristics of ECs, which are necessary for other aspects to be relevant. Lastly, the review presents the limitations of the literature while discussing the future trends. ECs fabricated with antimicrobial/antioxidant properties present promising results in increasing the shelf life of meat while preserving its sensory aspects. In general, ECs are highly sustainable and effective packaging systems for meat industries.
- Klíčová slova
- antimicrobial agents, emulsion coatings, meat, phase separation, rheology, thermal analysis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
During the production of mechanically deboned chicken meat (MDCM), a by-product is created that has no adequate use and is mostly disposed of in rendering plants. Due to the high content of collagen, it is a suitable raw material for the production of gelatin and hydrolysates. The purpose of the paper was to process the MDCM by-product into gelatin by 3-step extraction. An innovative method was used to prepare the starting raw material for gelatin extraction, demineralization in HCl, and conditioning with a proteolytic enzyme. A Taguchi design with two process factors (extraction temperature and extraction time) was used at three levels (42, 46, and 50 °C; 20, 40, and 60 min) to optimize the processing of the MDCM by-product into gelatins. The gel-forming and surface properties of the prepared gelatins were analyzed in detail. Depending on the processing conditions, gelatins are prepared with a gel strength of up to 390 Bloom, a viscosity of 0.9-6.8 mPa·s, a melting point of 29.9-38.4 °C, a gelling point of 14.9-17.6 °C, excellent water- and fat-holding capacity, and good foaming and emulsifying capacity and stability. The advantage of MDCM by-product processing technology is a very high degree of conversion (up to 77%) of the starting collagen raw material to gelatins and the preparation of 3 qualitatively different gelatin fractions suitable for a wide range of food, pharmaceutical, and cosmetic applications. Gelatins prepared from MDCM by-product can expand the offer of gelatins from other than beef and pork tissues.
- Klíčová slova
- Taguchi design, biomaterials, by-product, collagen, enzyme conditioning, gelatin, mechanically deboned chicken meat, zero-waste,
- MeSH
- kolagen * chemie MeSH
- kur domácí MeSH
- potraviny MeSH
- skot MeSH
- teplota MeSH
- želatina * chemie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kolagen * MeSH
- želatina * MeSH
With the increasing consumption of poultry meat around the world, the use of chicken stomachs as a source of collagen is being offered. The objective of this study was to extract gelatin from the stomachs of broiler chickens and to estimate their gel strength, ash content, viscosity, gelling point, melting point, clarity and digestibility. An innovative biotechnological method based on the conditioning of collagen with a microbial endoproteinase (Protamex®) and hot-water extraction was used to control the chemical and thermal denaturation process of collagen to prepare gelatin. The experiments were planned using a Taguchi design, 2 factors at 3 levels; factor A for the amount of proteolytic enzyme (0.10, 0.15 and 0.20%) and factor B for the extraction temperature (55.0, 62.5 and 70.0 °C). Data were statistically processed and analyzed at a significance level of 95%. The gelatin yield averaged 65 ± 8%; the gel strength ranged from 25 ± 1 to 439 ± 6 Bloom, the viscosity from 1.0 ± 0.4 to 3.40 ± 0.03 mPa·s, gelling point from 14.0 ± 2.0 to 22.0 ± 2.0 °C, melting point from 28.0 ± 1.0 to 37.0 ± 1.0 °C. The digestibility of gelatin was 100.0% in all samples; the ash content was very low (0.44 ± 0.02-0.81 ± 0.02%). The optimal conditions for the enzymatic treatment of collagen from chicken stomachs were achieved at a higher temperature (70.0 °C) and a lower amount of enzyme (0.10-0.15%). Conditioning chicken collagen with a microbial endoproteinase is an economically and environmentally friendly processing method, an alternative to the usual acid- or alkaline-based treatment that is used industrially. The extracted products can be used for food and pharmaceutical applications.
- Klíčová slova
- biotechnology, chicken stomachs, collagen, enzyme conditioning, food, gelatin, meat by-products, pharmacy, proteins,
- Publikační typ
- časopisecké články MeSH