Protein folding is an extremely complicated process, which has been extensively tackled during the last decades. In vivo, a certain molecular machinery is responsible for assisting the correct folding of proteins and maintaining protein homeostasis: the members of this machinery are the heat shock proteins (HSPs), which belong among molecular chaperones. Mutations in HSPs are associated with several inherited diseases, and members of this group were also proved to be involved in neurodegenerative pathologies (e.g., Alzheimer and Parkinson diseases), cancer, viral infections, and antibiotic resistance of bacteria. Therefore, it is critical to understand the principles of HSP functioning and their exact role in human physiology and pathology. This review attempts to briefly describe the main chaperone families and the interplay between individual chaperones, as well as their general and specific functions in the context of cell physiology and human diseases.
- Klíčová slova
- HSP, aggregation, cancer, chaperone, neurodegenerative disease, protein folding,
- MeSH
- lidé MeSH
- neurodegenerativní nemoci metabolismus genetika MeSH
- proteiny tepelného šoku * metabolismus genetika MeSH
- sbalování proteinů * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- proteiny tepelného šoku * MeSH
Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5]. BLBS was initially categorized as a progressive neurodegenerative syndrome caused by de novo heterozygous variants in either H3-3A or H3-3B [1-4]. Here, we analyze the data of the 58 previously published individuals along 38 unpublished, unrelated individuals. In this larger cohort of 96 people, we identify causative missense, synonymous, and stop-loss variants. We also expand upon the phenotypic characterization by elaborating on the neurodevelopmental component of BLBS. Notably, phenotypic heterogeneity was present even amongst individuals harboring the same variant. To explore the complex phenotypic variation in this expanded cohort, the relationships between syndromic phenotypes with three variables of interest were interrogated: sex, gene containing the causative variant, and variant location in the H3.3 protein. While specific genotype-phenotype correlations have not been conclusively delineated, the results presented here suggest that the location of the variants within the H3.3 protein and the affected gene (H3-3A or H3-3B) contribute more to the severity of distinct phenotypes than sex. Since these variables do not account for all BLBS phenotypic variability, these findings suggest that additional factors may play a role in modifying the phenotypes of affected individuals. Histones are poised at the interface of genetics and epigenetics, highlighting the potential role for gene-environment interactions and the importance of future research.
- MeSH
- dítě MeSH
- dospělí MeSH
- fenotyp * MeSH
- histony * genetika MeSH
- lidé MeSH
- mentální retardace genetika patologie MeSH
- mladiství MeSH
- neurodegenerativní nemoci genetika patologie MeSH
- neurovývojové poruchy genetika patologie MeSH
- předškolní dítě MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histony * MeSH
Maintenance of NAD pools is critical for neuronal survival. The capacity to maintain NAD pools declines in neurodegenerative disease. We identify that low NMNAT2, the critical neuronal NAD producing enzyme, drives retinal susceptibility to neurodegenerative insults. As proof of concept, gene therapy over-expressing full length human NMNAT2 is neuroprotective. To pharmacologically target NMNAT2, we identify that epigallocatechin gallate (EGCG) can drive NAD production in neurons through an NMNAT2 and NMN dependent mechanism. We confirm this by pharmacological and genetic inhibition of the NAD-salvage pathway. EGCG is neuroprotective in rodent (mixed sex) and human models of retinal neurodegeneration. As EGCG has poor drug-like qualities, we use it as a tool compound to generate novel small molecules which drive neuronal NAD production and provide neuroprotection. This class of NMNAT2 targeted small molecules could have an important therapeutic impact for neurodegenerative disease following further drug development.
- MeSH
- genetická terapie metody MeSH
- katechin * analogy a deriváty farmakologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- NAD * metabolismus MeSH
- neurodegenerativní nemoci farmakoterapie metabolismus genetika MeSH
- neurony * metabolismus účinky léků MeSH
- neuroprotektivní látky * farmakologie MeSH
- nikotinamidnukleotidadenylyltransferasa * metabolismus genetika MeSH
- retina metabolismus účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- epigallocatechin gallate MeSH Prohlížeč
- katechin * MeSH
- NAD * MeSH
- neuroprotektivní látky * MeSH
- nikotinamidnukleotidadenylyltransferasa * MeSH
- NMNAT2 protein, human MeSH Prohlížeč
Mitochondrial membrane protein-associated neurodegeneration (MPAN) is an ultraorphan neurogenetic disease from the group of neurodegeneration with brain iron accumulation (NBIA) disorders. Here we report cross-sectional and longitudinal data to define the phenotype, to assess disease progression and to estimate sample sizes for clinical trials. We enrolled patients with genetically confirmed MPAN from the Treat Iron-Related Childhood-Onset Neurodegeneration (TIRCON) registry and cohort study, and from additional sites. Linear mixed-effect modelling (LMEM) was used to calculate annual progression rates for the Unified Parkinson's Disease Rating Scale (UPDRS), Barry-Albright Dystonia (BAD) scale, Schwab and England Activities of Daily Living (SE-ADL) scale and the Pediatric Quality of Life Inventory (PedsQL). We investigated 85 MPAN patients cross-sectionally, with functional outcome data collected in 45. Median age at onset was 9 years and the median diagnostic delay was 5 years. The most common findings were gait disturbance (99%), pyramidal involvement (95%), dysarthria (90%), vision disturbances (82%), with all but dysarthria presenting early in the disease course. After 16 years with the disease, 50% of patients were wheelchair dependent. LMEM showed an annual progression rate of 4.5 points in total UPDRS. The total BAD scale score showed no significant progression over time. The SE-ADL scale and the patient- and parent-reported PedsQL showed a decline of 3.9%, 2.14 and 2.05 points, respectively. No patient subpopulations were identified based on longitudinal trajectories. Our cross-sectional results define the order of onset and frequency of symptoms in MPAN, which will inform the diagnostic process, help to shorten diagnostic delay and aid in counselling patients, parents and caregivers. Our longitudinal findings define the natural history of MPAN, reveal the most responsive outcomes and highlight the need for an MPAN-specific rating approach. Our sample size estimations inform the design of upcoming clinical trials.
- Klíčová slova
- MPAN, NBIA, mitochondrial membrane protein-associated neurodegeneration, neurodegeneration with brain iron accumulation,
- MeSH
- činnosti denního života MeSH
- dítě MeSH
- dysartrie MeSH
- dystonické poruchy * MeSH
- dystonie * MeSH
- fenotyp MeSH
- kohortové studie MeSH
- kvalita života MeSH
- lidé MeSH
- membránové proteiny genetika MeSH
- mitochondriální membrány MeSH
- mutace genetika MeSH
- neurodegenerativní nemoci * genetika MeSH
- opožděná diagnóza MeSH
- průřezové studie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- membránové proteiny MeSH
The disease progression of neurodegenerative disorders (NDD), including Alzheimer's, Parkinson's and Huntington's disease, is inextricably tied to mitochondrial dysfunction. However, although the contribution by nuclear gene mutations is recognised for familial onset of NDD, the degree to which cytoplasmic inheritance serves as a predetermining factor for the predisposition and onset of NDD is not yet fully understood. We review the reproductive mechanisms responsible for ensuring a healthy mitochondrial population within each new generation and elucidate how advanced maternal age can constitute an increased risk for the onset of NDD in the offspring, through the increased heteroplasmic burden. On the one hand, this review draws attention to how assisted reproductive technologies (ART) can impair mitochondrial fitness in offspring. On the other hand, we consider qualified ART approaches as a significant tool for the prevention of NDD pathogenesis.
- MeSH
- cvičení MeSH
- lidé MeSH
- mitochondrie genetika MeSH
- neurodegenerativní nemoci * genetika MeSH
- progrese nemoci MeSH
- rozmnožování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Vesicles mediate the trafficking of membranes/proteins in the endocytic and secretory pathways. These pathways are regulated by small GTPases of the Rab family. Rab proteins belong to the Ras superfamily of GTPases, which are significantly involved in various intracellular trafficking and signaling processes in the nervous system. Rab11 is known to play a key role especially in recycling many proteins, including receptors important for signal transduction and preservation of functional activities of nerve cells. Rab11 activity is controlled by GEFs (guanine exchange factors) and GAPs (GTPase activating proteins), which regulate its function through modulating GTP/GDP exchange and the intrinsic GTPase activity, respectively. Rab11 is involved in the transport of several growth factor molecules important for the development and repair of neurons. Overexpression of Rab11 has been shown to significantly enhance vesicle trafficking. On the other hand, a reduced expression of Rab11 was observed in several neurodegenerative diseases. Current evidence appears to support the notion that Rab11 and its cognate proteins may be potential targets for therapeutic intervention. In this review, we briefly discuss the function of Rab11 and its related interaction partners in intracellular pathways that may be involved in neurodegenerative processes.
- Klíčová slova
- Rab11, Rab11-FIPs, neurodegenerative diseases, vesicle trafficking,
- MeSH
- biologický transport genetika fyziologie MeSH
- lidé MeSH
- membránové proteiny genetika metabolismus MeSH
- neurodegenerativní nemoci * genetika metabolismus MeSH
- neurony metabolismus MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- membránové proteiny MeSH
- rab11 protein MeSH Prohlížeč
Mutations in BRAT1, encoding BRCA1-associated ATM activator 1, have been associated with neurodevelopmental and neurodegenerative disorders characterized by heterogeneous phenotypes with varying levels of clinical severity. However, the underlying molecular mechanisms of disease pathology remain poorly understood. Here, we show that BRAT1 tightly interacts with INTS9/INTS11 subunits of the Integrator complex that processes 3' ends of various noncoding RNAs and pre-mRNAs. We find that Integrator functions are disrupted by BRAT1 deletion. In particular, defects in BRAT1 impede proper 3' end processing of UsnRNAs and snoRNAs, replication-dependent histone pre-mRNA processing, and alter the expression of protein-coding genes. Importantly, impairments in Integrator function are also evident in patient-derived cells from BRAT1 related neurological disease. Collectively, our data suggest that defects in BRAT1 interfere with proper Integrator functions, leading to incorrect expression of RNAs and proteins, resulting in neurodegeneration.
- MeSH
- fenotyp MeSH
- histony MeSH
- jaderné proteiny * genetika MeSH
- lidé MeSH
- mutace MeSH
- neurodegenerativní nemoci * genetika MeSH
- posttranskripční úpravy RNA * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- BRAT1 protein, human MeSH Prohlížeč
- histony MeSH
- jaderné proteiny * MeSH
Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy and movement disorder. We evaluated a large cohort of patients (n = 25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor and ataxia. Later in the disease course, they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibres and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.
- Klíčová slova
- congenital disorders of glycosylation, dolichol, movement disorder, myoclonus epilepsy, neurodegenerative disorder,
- MeSH
- alkyltransferasy a aryltransferasy * MeSH
- dítě MeSH
- dolichol metabolismus MeSH
- lidé MeSH
- myoklonus * MeSH
- neurodegenerativní nemoci * genetika MeSH
- retinopathia pigmentosa * genetika MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- alkyltransferasy a aryltransferasy * MeSH
- dolichol MeSH
BACKGROUND: Neurodegeneration with brain iron accumulation (NBIA) are a group of clinically and genetically heterogeneous diseases characterized by iron overload in basal ganglia and progressive neurodegeneration. Little is known about the epidemiology of NBIA disorders. In the absence of large-scale population-based studies, obtaining reliable epidemiological data requires innovative approaches. METHODS: All pathogenic variants were collected from the 13 genes associated with autosomal recessive NBIA (PLA2G6, PANK2, COASY, ATP13A2, CP, AP4M1, FA2H, CRAT, SCP2, C19orf12, DCAF17, GTPBP2, REPS1). The allele frequencies of these disease-causing variants were assessed in exome/genome collections: the Genome Aggregation Database (gnomAD) and our in-house database. Lifetime risks were calculated from the sum of allele frequencies in the respective genes under assumption of Hardy-Weinberg equilibrium. FINDINGS: The combined estimated lifetime risk of all 13 investigated NBIA disorders is 0.88 (95% confidence interval 0.70-1.10) per 100,000 based on the global gnomAD dataset (n = 282,912 alleles), 0.92 (0.65-1.29) per 100,000 in the European gnomAD dataset (n = 129,206), and 0.90 (0.48-1.62) per 100,000 in our in-house database (n = 44,324). Individually, the highest lifetime risks (>0.15 per 100,000) are found for disorders caused by variants in PLA2G6, PANK2 and COASY. INTERPRETATION: This population-genetic estimation on lifetime risks of recessive NBIA disorders reveals frequencies far exceeding previous population-based numbers. Importantly, our approach represents lifetime risks from conception, thus including prenatal deaths. Understanding the true lifetime risk of NBIA disorders is important in estimating disease burden, allocating resources and targeting specific interventions. FUNDING: This work was carried out in the framework of TIRCON ("Treat Iron-Related Childhood-Onset Neurodegeneration").
- Klíčová slova
- Autosomal recessive NBIA disorders, CoPAN, Lifetime risk, Neurodegeneration, PKAN, PLAN,
- MeSH
- databáze genetické MeSH
- dítě MeSH
- jaderné proteiny MeSH
- komplexy ubikvitinligas MeSH
- lidé MeSH
- mitochondriální proteiny genetika MeSH
- mozek patologie MeSH
- neuroaxonální dystrofie * epidemiologie genetika patologie MeSH
- neurodegenerativní nemoci * epidemiologie genetika patologie MeSH
- poruchy metabolismu železa * genetika patologie MeSH
- proteiny vázající vápník MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- C19orf12 protein, human MeSH Prohlížeč
- DCAF17 protein, human MeSH Prohlížeč
- jaderné proteiny MeSH
- komplexy ubikvitinligas MeSH
- mitochondriální proteiny MeSH
- proteiny vázající vápník MeSH
- REPS1 protein, human MeSH Prohlížeč
OBJECTIVE: ATP synthase (ATPase) is responsible for the majority of ATP production. Nevertheless, disease phenotypes associated with mutations in ATPase subunits are extremely rare. We aimed at expanding the spectrum of ATPase-related diseases. METHODS: Whole-exome sequencing in cohorts with 2,962 patients diagnosed with mitochondrial disease and/or dystonia and international collaboration were used to identify deleterious variants in ATPase-encoding genes. Findings were complemented by transcriptional and proteomic profiling of patient fibroblasts. ATPase integrity and activity were assayed using cells and tissues from 5 patients. RESULTS: We present 10 total individuals with biallelic or de novo monoallelic variants in nuclear ATPase subunit genes. Three unrelated patients showed the same homozygous missense ATP5F1E mutation (including one published case). An intronic splice-disrupting alteration in compound heterozygosity with a nonsense variant in ATP5PO was found in one patient. Three patients had de novo heterozygous missense variants in ATP5F1A, whereas another 3 were heterozygous for ATP5MC3 de novo missense changes. Bioinformatics methods and populational data supported the variants' pathogenicity. Immunohistochemistry, proteomics, and/or immunoblotting revealed significantly reduced ATPase amounts in association to ATP5F1E and ATP5PO mutations. Diminished activity and/or defective assembly of ATPase was demonstrated by enzymatic assays and/or immunoblotting in patient samples bearing ATP5F1A-p.Arg207His, ATP5MC3-p.Gly79Val, and ATP5MC3-p.Asn106Lys. The associated clinical profiles were heterogeneous, ranging from hypotonia with spontaneous resolution (1/10) to epilepsy with early death (1/10) or variable persistent abnormalities, including movement disorders, developmental delay, intellectual disability, hyperlactatemia, and other neurologic and systemic features. Although potentially reflecting an ascertainment bias, dystonia was common (7/10). INTERPRETATION: Our results establish evidence for a previously unrecognized role of ATPase nuclear-gene defects in phenotypes characterized by neurodevelopmental and neurodegenerative features. ANN NEUROL 2022;91:225-237.
- MeSH
- dystonie enzymologie genetika MeSH
- epilepsie genetika MeSH
- fenotyp MeSH
- genetická variace MeSH
- lidé MeSH
- missense mutace MeSH
- mitochondriální ADP/ATP-translokasy genetika MeSH
- mitochondriální nemoci enzymologie genetika MeSH
- mitochondriální protonové ATPasy genetika MeSH
- mitochondrie enzymologie genetika MeSH
- molekulární modely MeSH
- mutace MeSH
- nemoci nervového systému enzymologie genetika MeSH
- neurodegenerativní nemoci enzymologie genetika MeSH
- neurovývojové poruchy enzymologie genetika MeSH
- proteomika MeSH
- rodokmen MeSH
- sekvenování exomu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ATP5F1A protein, human MeSH Prohlížeč
- ATP5PD protein, human MeSH Prohlížeč
- mitochondriální ADP/ATP-translokasy MeSH
- mitochondriální protonové ATPasy MeSH