SART3 is a multifunctional protein that acts in several steps of gene expression, including assembly and recycling of the spliceosomal U4/U6 small nuclear ribonucleoprotein particle (snRNP). In this work, we provide evidence that SART3 associates via its N-terminal HAT domain with the 12S U2 snRNP. Further analysis showed that SART3 associates with the post-splicing complex containing U2 and U5 snRNP components. In addition, we observed an interaction between SART3 and the RNA helicase DHX15, which disassembles post-splicing complexes. Based on our data, we propose a model that SART3 associates via its N-terminal HAT domain with the post-splicing complex, where it interacts with U6 snRNA to protect it and to initiate U6 snRNA recycling before a next round of splicing.
- Klíčová slova
- Recycling, Splicing, U2 snRNP, U6 snRNA,
- MeSH
- malý jaderný ribonukleoprotein U2 genetika metabolismus MeSH
- malý jaderný ribonukleoprotein U4-U6 genetika metabolismus MeSH
- malý jaderný ribonukleoprotein U5 genetika metabolismus MeSH
- ribonukleoproteiny malé jaderné genetika metabolismus MeSH
- RNA malá jaderná genetika metabolismus MeSH
- sestřih RNA * genetika MeSH
- spliceozomy * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- malý jaderný ribonukleoprotein U2 MeSH
- malý jaderný ribonukleoprotein U4-U6 MeSH
- malý jaderný ribonukleoprotein U5 MeSH
- ribonukleoproteiny malé jaderné MeSH
- RNA malá jaderná MeSH
Split gene architecture of most human genes requires removal of intervening sequences by mRNA splicing that occurs on large multiprotein complexes called spliceosomes. Mutations compromising several spliceosomal components have been recorded in degenerative syndromes and haematological neoplasia, thereby highlighting the importance of accurate splicing execution in homeostasis of assorted adult tissues. Moreover, insufficient splicing underlies defective development of craniofacial skeleton and upper extremities. This review summarizes recent advances in the understanding of splicing factor function deduced from cryo-EM structures. We combine these data with the characterization of splicing factors implicated in hereditary or somatic disorders, with a focus on potential functional consequences the mutations may elicit in spliceosome assembly and/or performance. Given aberrant splicing or perturbations in splicing efficiency substantially underpin disease pathogenesis, profound understanding of the mis-splicing principles may open new therapeutic vistas. In three major sections dedicated to retinal dystrophies, hereditary acrofacial syndromes, and haematological malignancies, we delineate the noticeable variety of conditions associated with dysfunctional splicing and accentuate recurrent patterns in splicing defects.
- Klíčová slova
- Congenital craniofacial disorders, Haematological malignancies, Mutations, Retinopathy, Spliceosome,
- MeSH
- elektronová kryomikroskopie MeSH
- konformace proteinů MeSH
- lidé MeSH
- mutace MeSH
- nemoc genetika MeSH
- prekurzory RNA genetika MeSH
- ribonukleoproteiny malé jaderné chemie genetika ultrastruktura MeSH
- sestřih RNA * MeSH
- spliceozomy genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- prekurzory RNA MeSH
- ribonukleoproteiny malé jaderné MeSH
Spliceosomal snRNPs are complex particles that proceed through a fascinating maturation pathway. Several steps of this pathway are closely linked to nuclear non-membrane structures called Cajal bodies. In this review, I summarize the last 20 y of research in this field. I primarily focus on snRNP biogenesis, specifically on the steps that involve Cajal bodies. I also evaluate the contribution of the Cajal body in snRNP quality control and discuss the role of snRNPs in Cajal body formation.
- MeSH
- Cajalova tělíska metabolismus MeSH
- genetická transkripce MeSH
- lidé MeSH
- posttranskripční úpravy RNA MeSH
- ribonukleoproteiny malé jaderné genetika metabolismus MeSH
- spliceozomy MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- ribonukleoproteiny malé jaderné MeSH
A majority of human genes contain non-coding intervening sequences - introns that must be precisely excised from the pre-mRNA molecule. This event requires the coordinated action of five major small nuclear ribonucleoprotein particles (snRNPs) along with additional non-snRNP splicing proteins. Introns must be removed with nucleotidal precision, since even a single nucleotide mistake would result in a reading frame shift and production of a non-functional protein. Numerous human inherited diseases are caused by mutations that affect splicing, including mutations in proteins which are directly involved in splicing catalysis. One of the most common hereditary diseases associated with mutations in core splicing proteins is retinitis pigmentosa (RP). So far, mutations in more than 70 genes have been connected to RP. While the majority of mutated genes are expressed specifically in the retina, eight target genes encode for ubiquitous core snRNP proteins (Prpf3, Prpf4, Prpf6, Prpf8, Prpf31, and SNRNP200/Brr2) and splicing factors (RP9 and DHX38). Why mutations in spliceosomal proteins, which are essential in nearly every cell in the body, causes a disease that displays such a tissue-specific phenotype is currently a mystery. In this review, we recapitulate snRNP functions, summarize the missense mutations which are found in spliceosomal proteins as well as their impact on protein functions and discuss specific models which may explain why the retina is sensitive to these mutations.
- Klíčová slova
- Retinitis pigmentosa, snRNP, splicing,
- MeSH
- introny MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- missense mutace MeSH
- myši MeSH
- prekurzory RNA genetika metabolismus MeSH
- retinopathia pigmentosa genetika MeSH
- ribonukleoproteiny malé jaderné genetika metabolismus MeSH
- sestřih RNA MeSH
- sestřihové faktory genetika metabolismus MeSH
- spliceozomy genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- prekurzory RNA MeSH
- ribonukleoproteiny malé jaderné MeSH
- sestřihové faktory MeSH
The steroid hormone ecdysone coordinates insect growth and development, directing the major postembryonic transition of forms, metamorphosis. The steroid-deficient ecdysoneless1 (ecd1) strain of Drosophila melanogaster has long served to assess the impact of ecdysone on gene regulation, morphogenesis, or reproduction. However, ecd also exerts cell-autonomous effects independently of the hormone, and mammalian Ecd homologs have been implicated in cell cycle regulation and cancer. Why the Drosophila ecd1 mutants lack ecdysone has not been resolved. Here, we show that in Drosophila cells, Ecd directly interacts with core components of the U5 snRNP spliceosomal complex, including the conserved Prp8 protein. In accord with a function in pre-mRNA splicing, Ecd and Prp8 are cell-autonomously required for survival of proliferating cells within the larval imaginal discs. In the steroidogenic prothoracic gland, loss of Ecd or Prp8 prevents splicing of a large intron from CYP307A2/spookier (spok) pre-mRNA, thus eliminating this essential ecdysone-biosynthetic enzyme and blocking the entry to metamorphosis. Human Ecd (hEcd) can substitute for its missing fly ortholog. When expressed in the Ecd-deficient prothoracic gland, hEcd re-establishes spok pre-mRNA splicing and protein expression, restoring ecdysone synthesis and normal development. Our work identifies Ecd as a novel pre-mRNA splicing factor whose function has been conserved in its human counterpart. Whether the role of mammalian Ecd in cancer involves pre-mRNA splicing remains to be discovered.
- MeSH
- buněčný cyklus genetika MeSH
- Drosophila melanogaster genetika MeSH
- ekdyson genetika MeSH
- kultivované buňky MeSH
- larva genetika MeSH
- mutace genetika MeSH
- prekurzory RNA genetika MeSH
- proteiny Drosophily genetika MeSH
- ribonukleoproteiny malé jaderné genetika MeSH
- sestřih RNA genetika MeSH
- spliceozomy genetika MeSH
- steroidy metabolismus MeSH
- vývojová regulace genové exprese genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ecd protein, Drosophila MeSH Prohlížeč
- ekdyson MeSH
- prekurzory RNA MeSH
- proteiny Drosophily MeSH
- ribonukleoproteiny malé jaderné MeSH
- steroidy MeSH
Mutations in SNRP200 gene cause autosomal-dominant retinal disorder retinitis pigmentosa (RP). The protein product of SNRNP200 is BRR2, a DExD/H box RNA helicase crucial for pre-mRNA splicing. In this study, we prepared p.S1087L and p.R1090L mutations of human BRR2 using bacterial artificial chromosome recombineering and stably expressed them in human cell culture. Mutations in BRR2 did not compromise snRNP assembly and both mutants were incorporated into the spliceosome just as the wild-type (wt) protein. Surprisingly, cells expressing RP mutants exhibited increased splicing efficiency of the LDHA gene. Next, we found that depletion of endogenous BRR2 enhanced usage of a β-globin cryptic splice site while splicing at the correct splice site was inhibited. Proper splicing of optimal and cryptic splice sites was restored in cells expressing BRR2-wt but not in cells expressing RP mutants. Taken together, our data suggest that BRR2 is an important factor in 5'-splice-site recognition and that the RP-linked mutations c.3260C>T (p.S1087L) and c.3269G>T (p.R1090L) affect this BRR2 function.
- Klíčová slova
- RNA splicing, SNRP200, U5 snRNP, cryptic splice sites, retinitis pigmentosa,
- MeSH
- alternativní sestřih MeSH
- beta-globiny genetika metabolismus MeSH
- HeLa buňky MeSH
- klonování DNA MeSH
- lidé MeSH
- místa sestřihu RNA genetika MeSH
- mutace * MeSH
- prekurzory RNA genetika metabolismus MeSH
- reportérové geny MeSH
- retinopathia pigmentosa genetika MeSH
- ribonukleoproteiny malé jaderné genetika MeSH
- RNA-helikasy genetika MeSH
- spliceozomy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-globiny MeSH
- místa sestřihu RNA MeSH
- prekurzory RNA MeSH
- ribonukleoproteiny malé jaderné MeSH
- RNA-helikasy MeSH
- SNRNP200 protein, human MeSH Prohlížeč
The U4/U6·U5 tri-small nuclear ribonucleoprotein particle (tri-snRNP) is an essential pre-mRNA splicing factor, which is assembled in a stepwise manner before each round of splicing. It was previously shown that the tri-snRNP is formed in Cajal bodies (CBs), but little is known about the dynamics of this process. Here we created a mathematical model of tri-snRNP assembly in CBs and used it to fit kinetics of individual snRNPs monitored by fluorescence recovery after photobleaching. A global fitting of all kinetic data determined key reaction constants of tri-snRNP assembly. Our model predicts that the rates of di-snRNP and tri-snRNP assemblies are similar and that ∼230 tri-snRNPs are assembled in one CB per minute. Our analysis further indicates that tri-snRNP assembly is approximately 10-fold faster in CBs than in the surrounding nucleoplasm, which is fully consistent with the importance of CBs for snRNP formation in rapidly developing biological systems. Finally, the model predicted binding between SART3 and a CB component. We tested this prediction by Förster resonance energy transfer and revealed an interaction between SART3 and coilin in CBs.
- MeSH
- antigeny nádorové genetika metabolismus MeSH
- buněčné jádro genetika metabolismus MeSH
- Cajalova tělíska genetika metabolismus MeSH
- HeLa buňky MeSH
- jaderné proteiny metabolismus MeSH
- kinetika MeSH
- lidé MeSH
- malý jaderný ribonukleoprotein U4-U6 genetika metabolismus MeSH
- malý jaderný ribonukleoprotein U5 genetika metabolismus MeSH
- molekulární modely * MeSH
- nádorové buněčné linie MeSH
- prekurzory RNA genetika metabolismus MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- ribonukleoproteiny malé jaderné genetika metabolismus MeSH
- RNA-helikasy genetika metabolismus MeSH
- sestřih RNA genetika MeSH
- spliceozomy genetika metabolismus MeSH
- vazba proteinů genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny nádorové MeSH
- DHX15 protein, human MeSH Prohlížeč
- jaderné proteiny MeSH
- malý jaderný ribonukleoprotein U4-U6 MeSH
- malý jaderný ribonukleoprotein U5 MeSH
- p80-coilin MeSH Prohlížeč
- prekurzory RNA MeSH
- proteiny vázající RNA MeSH
- ribonukleoproteiny malé jaderné MeSH
- RNA-helikasy MeSH
- SART3 protein, human MeSH Prohlížeč
- SNRNP200 protein, human MeSH Prohlížeč
The AD29 mutation in HPRP31 belongs to a series of mutations that were initially linked with the autosomal dominant disorder retinitis pigmentosa (RP) type 11. The HPRP31 gene encodes the hPrp31 protein that specifically associates with spliceosomal small nuclear ribonucleoprotein particles (snRNPs). Despite intensive research, it is still unclear how the AD29 (Ala216Pro) mutation causes RP. In this study, we report that the expression of this mutant protein affects cell proliferation and alters the structure of nuclear Cajal bodies that are connected with snRNP metabolism. Interestingly, these effects can be reversed by the over-expression of the hPrp6 protein, a binding partner of hPrp31. Although Ala216 is not contained within the U4 or U5 snRNP interacting domains, we present several lines of evidence that demonstrate that the association between the AD29 mutant and snRNPs in the cell nucleus is significantly reduced. Finally, we show that the stability of the AD29 mutant is severely affected resulting in its rapid degradation. Taken together, our results indicate that the Ala216Pro mutation destabilizes the hPrp31 protein structure in turn reducing its interaction with snRNP binding partners and leading to its rapid degradation. These findings significantly impact our understanding of the molecular mechanisms underlying RP and suggest that the insufficiency of the functional hPrp31 protein combined with the potential cytotoxicity associated with the expression the AD29 mutant are at least partially causative of the RP phenotype.
- MeSH
- Cajalova tělíska genetika metabolismus MeSH
- HeLa buňky MeSH
- lidé MeSH
- missense mutace * MeSH
- oční proteiny chemie genetika metabolismus MeSH
- retinopathia pigmentosa genetika metabolismus MeSH
- ribonukleoproteiny malé jaderné genetika metabolismus MeSH
- spliceozomy genetika metabolismus MeSH
- stabilita proteinů MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- oční proteiny MeSH
- PRPF31 protein, human MeSH Prohlížeč
- ribonukleoproteiny malé jaderné MeSH
Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) are essential pre-mRNA splicing factors that consist of small nuclear RNAs (snRNAs) complexed with specific sets of proteins. A considerable body of evidence has established that snRNP assembly is accomplished after snRNA synthesis in the nucleus through a series of steps involving cytoplasmic and nuclear phases. Recent work indicates that snRNPs transiently localize to the Cajal body (CB), a nonmembrane-bound inclusion present in the nuclei of most cells, for the final steps in snRNP maturation, including snRNA base modification, U4/U6 snRNA annealing, and snRNA-protein assembly. Here, we review these findings that suggest a crucial role for CBs in the spliceosome cycle in which production of new snRNPs--and perhaps regenerated snRNPs after splicing--is promoted by the concentration of substrates in this previously mysterious subnuclear organelle. These insights allow us to speculate on the role of nuclear bodies in regulating the dynamics of RNP assembly to maintain a functional pool of factors available for key steps in gene expression.
- MeSH
- biologické modely MeSH
- Cajalova tělíska genetika metabolismus MeSH
- histony genetika metabolismus MeSH
- jaderné proteiny nedostatek genetika metabolismus MeSH
- lidé MeSH
- posttranskripční úpravy RNA MeSH
- ribonukleoproteiny malé jaderné chemie genetika metabolismus MeSH
- RNA malá jaderná chemie genetika metabolismus MeSH
- sestřih RNA MeSH
- spliceozomy genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- histony MeSH
- jaderné proteiny MeSH
- p80-coilin MeSH Prohlížeč
- ribonukleoproteiny malé jaderné MeSH
- RNA malá jaderná MeSH
BACKGROUND: Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinctive diseases with severe impairment of psychomotoric development and behaviour. Both syndromes are caused by the loss of paternal (PWS) or maternal (AS) gene expression of chromosomal region 15q11-13. The work reveals the various causes of this loss. The choice of the most suitable method for screening of the genome mutations in the patients suspected of PWS and AS is another purpose of the work. METHODS AND RESULTS: The methyl specific analysis (MS PCR) in locus SNRPN, short tandem repeat (STR) analysis and fluorescent in situ hybridization (FISH) were used. In the group of 55 patients tested for PWS and AS only maternal allele was present in 11 patients and only paternal allele was present in 1 patient in the locus SNRPN: 10 microdeletions 15q11-13, 1 UPD(15)mat and 1 UPD(15)pat. CONCLUSIONS: MS PCR seems to be the most profitable method for the first step of selection of PWS patients. In positive cases is inevitable to use also additional tests of molecular diagnosis to distinguish the particular mechanism leading to the disorders. In AS patients is also MSPCR recommended as the first step although it is necessary to exclude mutation in UBE3A gene in case of MS PCR negativity.
- MeSH
- Angelmanův syndrom genetika MeSH
- autoantigeny MeSH
- chromozomální delece MeSH
- dítě MeSH
- dospělí MeSH
- hybridizace in situ fluorescenční MeSH
- jádro snRNP - proteiny MeSH
- kojenec MeSH
- lidé MeSH
- lidské chromozomy, pár 15 MeSH
- metylace DNA MeSH
- mladiství MeSH
- novorozenec MeSH
- polymerázová řetězová reakce MeSH
- Praderův-Williho syndrom genetika MeSH
- předškolní dítě MeSH
- ribonukleoproteiny malé jaderné genetika MeSH
- tandemové repetitivní sekvence MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- Publikační typ
- anglický abstrakt MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- autoantigeny MeSH
- jádro snRNP - proteiny MeSH
- ribonukleoproteiny malé jaderné MeSH
- SNRPN protein, human MeSH Prohlížeč