Most cited article - PubMed ID 21875945
Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies
The ability of yeast cells to adhere to solid surfaces or even penetrate semi-solid surfaces and form multicellular biofilms are critical factors in infection. This study examines the relationship between cell adhesion capability and the ability to create spatially organized biofilms in selected Saccharomyces cerevisiae strains, including clinical isolates, and five Candida species (C. albicans, C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis). We assessed cell adhesion to polystyrene surface in four media varying in source of carbon and other nutrients. Using microscopy of vertical cell arrangement profiles within yeast populations grown at the solid-liquid interface, we evaluated their internal organization to determine whether the populations exhibit typical biofilm characteristics, such as the spatial organization of distinct cell types. Results indicate that well adherent S. cerevisiae strains form spatial biofilms with typical internal organization, highlighting strain-specific responses to media composition and supporting the use of natural S. cerevisiae strains for biofilm research. Among Candida species, biofilm formation did not consistently align with adhesion efficiency to plastic; while C. albicans and C. krusei formed spatially structured biofilms on media where they adhered well, C. tropicalis and C. glabrata exhibited efficient adhesion without biofilm structuring. Interestingly, C. parapsilosis formed a structured biofilm despite minimal adhesion. These findings emphasize the role of media composition, particularly components of yeast extract and defined medium for mammalian cell growth RPMI, which differentially impacted adhesion and biofilm formation in S. cerevisiae and C. albicans.
- Keywords
- Adhesion, Biofilm, Microscopy, Spatial structure, Yeast,
- Publication type
- Journal Article MeSH
Since the first observations of biofilm formation by microorganisms on various surfaces more than 50 years ago, it has been shown that most "unicellular" microorganisms prefer to grow in multicellular communities that often adhere to surfaces. The microbes in these communities adhere to each other, produce an extracellular matrix (ECM) that protects them from drugs, toxins and the host's immune system, and they coordinate their development and differentiate into different forms via signaling molecules and nutrient gradients. Biofilms are a serious problem in industry, agriculture, the marine environment and human and animal health. Many researchers are therefore investigating ways to disrupt biofilm formation by killing microbes or disrupting adhesion to a surface, quorum sensing or ECM production. This review provides an overview of approaches to altering various surfaces through physical, chemical or biological modifications to reduce/prevent microbial cell adhesion and biofilm development and maintenance. It also discusses the advantages and disadvantages of each approach and the challenges faced by researchers in this field.
- Keywords
- antimicrobial modifications of materials, microbial biofilms, modified surfaces, yeast and bacterial adhesion,
- MeSH
- Bacterial Adhesion * drug effects MeSH
- Biofilms * growth & development drug effects MeSH
- Extracellular Matrix metabolism MeSH
- Humans MeSH
- Surface Properties MeSH
- Quorum Sensing drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Cell death is a natural part of the development of multicellular organisms and is central to their physiological and pathological states. However, the existence of regulated cell death in unicellular microorganisms, including eukaryotic and prokaryotic microbes, has been a topic of debate. One reason for the continued debate is the lack of obvious benefit from cell death in the context of a single cell. However, unicellularity is relative, as most of these microbes dwell in communities of varying complexities, often with complicated spatial organization. In these spatially organized microbial communities, such as yeast and bacterial colonies and biofilms growing on solid surfaces, cells differentiate into specialized types, and the whole community often behaves like a simple multicellular organism. As these communities develop and age, cell death appears to offer benefits to the community as a whole. This review explores the potential roles of cell death in spatially organized communities of yeasts and draws analogies to similar communities of bacteria. The natural dying processes in microbial cell communities are only partially understood and may result from suicidal death genes, (self-)sabotage (without death effectors), or from non-autonomous mechanisms driven by interactions with other differentiated cells. We focus on processes occurring during the stratification of yeast colonies, the formation of the extracellular matrix in biofilms, and discuss potential roles of cell death in shaping the organization, differentiation, and overall physiology of these microbial structures.
- Publication type
- Journal Article MeSH
- Review MeSH
Cells must change their properties in order to adapt to a constantly changing environment. Most of the cellular sensing and regulatory mechanisms described so far are based on proteins that serve as sensors, signal transducers, and effectors of signalling pathways, resulting in altered cell physiology. In recent years, however, remarkable examples of the critical role of non-coding RNAs in some of these regulatory pathways have been described in various organisms. In this review, we focus on all classes of non-coding RNAs that play regulatory roles during stress response, starvation, and ageing in different yeast species as well as in structured yeast populations. Such regulation can occur, for example, by modulating the amount and functional state of tRNAs, rRNAs, or snRNAs that are directly involved in the processes of translation and splicing. In addition, long non-coding RNAs and microRNA-like molecules are bona fide regulators of the expression of their target genes. Non-coding RNAs thus represent an additional level of cellular regulation that is gradually being uncovered.
- Keywords
- RNA modifications, epitranscriptome, lncRNA, tRNA, yeast,
- MeSH
- MicroRNAs * genetics MeSH
- RNA, Long Noncoding * genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- MicroRNAs * MeSH
- RNA, Long Noncoding * MeSH
Single-celled yeasts form spatially structured populations - colonies and biofilms, either alone (single-species biofilms) or in cooperation with other microorganisms (mixed-species biofilms). Within populations, yeast cells develop in a coordinated manner, interact with each other and differentiate into specialized cell subpopulations that can better adapt to changing conditions (e.g. by reprogramming metabolism during nutrient deficiency) or protect the overall population from external influences (e.g. via extracellular matrix). Various omics tools together with specialized techniques for separating differentiated cells and in situ microscopy have revealed important processes and cell interactions in these structures, which are summarized here. Nevertheless, current knowledge is still only a small part of the mosaic of complexity and diversity of the multicellular structures that yeasts form in different environments. Future challenges include the use of integrated multi-omics approaches and a greater emphasis on the analysis of differentiated cell subpopulations with specific functions.
- Keywords
- Biofilms, Cell differentiation, Colonies, Multicellular yeast structures, Regulation, Spatial community structure,
- Publication type
- Journal Article MeSH
- Review MeSH
During development of yeast colonies, various cell subpopulations form, which differ in their properties and specifically localize within the structure. Three branches of mitochondrial retrograde (RTG) signaling play a role in colony development and differentiation, each of them activating the production of specific markers in different cell types. Here, aiming to identify proteins and processes controlled by the RTG pathway, we analyzed proteomes of individual cell subpopulations from colonies of strains, mutated in genes of the RTG pathway. Resulting data, along with microscopic analyses revealed that the RTG pathway predominantly regulates processes in U cells, long-lived cells with unique properties, which are localized in upper colony regions. Rtg proteins therein activate processes leading to amino acid biosynthesis, including transport of metabolic intermediates between compartments, but also repress expression of mitochondrial ribosome components, thus possibly contributing to reduced mitochondrial translation in U cells. The results reveal the RTG pathway's role in activating metabolic processes, important in U cell adaptation to altered nutritional conditions. They also point to the important role of Rtg regulators in repressing mitochondrial activity in U cells.
- Keywords
- Saccharomyces cerevisiae, colony development and differentiation, mitochondrial retrograde signaling, proteomic analysis, yeast colonies,
- MeSH
- Amino Acids metabolism MeSH
- Single-Cell Analysis MeSH
- Biosynthetic Pathways genetics MeSH
- Chromatography, Liquid MeSH
- Intracellular Signaling Peptides and Proteins genetics metabolism MeSH
- Mitochondria genetics metabolism MeSH
- Proteome genetics metabolism MeSH
- Proteomics MeSH
- Gene Expression Regulation, Fungal genetics MeSH
- Repressor Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae genetics metabolism MeSH
- Signal Transduction genetics MeSH
- Tandem Mass Spectrometry MeSH
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amino Acids MeSH
- Intracellular Signaling Peptides and Proteins MeSH
- MKS1 protein, S cerevisiae MeSH Browser
- Proteome MeSH
- Repressor Proteins MeSH
- RTG1 protein, S cerevisiae MeSH Browser
- RTG2 protein, S cerevisiae MeSH Browser
- RTG3 protein, S cerevisiae MeSH Browser
- Saccharomyces cerevisiae Proteins MeSH
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors MeSH
Multicellular structures formed by yeasts and other microbes are valuable models for investigating the processes of cell-cell interaction and pattern formation, as well as cell signaling and differentiation. These processes are essential for the organization and development of diverse microbial communities that are important in everyday life. Two major types of multicellular structures are formed by yeast Saccharomyces cerevisiae on semisolid agar. These are colonies formed by laboratory or domesticated strains and structured colony biofilms formed by wild strains. These structures differ in spatiotemporal organization and cellular differentiation. Using state-of-the-art microscopy and mutant analysis, we investigated the distribution of cells within colonies and colony biofilms and the involvement of specific processes therein. We show that prominent differences between colony and biofilm structure are determined during early stages of development and are associated with the different distribution of growing cells. Two distinct cell distribution patterns were identified-the zebra-type and the leopard-type, which are genetically determined. The role of Flo11p in cell adhesion and extracellular matrix production is essential for leopard-type distribution, because FLO11 deletion triggers the switch to zebra-type cell distribution. However, both types of cell organization are independent of cell budding polarity and cell separation as determined using respective mutants.
- Keywords
- Flo11p adhesin, cell adhesion, cell organization, colonies and biofilms, laboratory and wild Saccharomyces cerevisiae strains, structure development, yeast multicellular structures,
- MeSH
- Biofilms * MeSH
- Cell Division MeSH
- Membrane Glycoproteins genetics metabolism MeSH
- Microbial Interactions MeSH
- Mutation MeSH
- Saccharomyces cerevisiae Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae cytology metabolism physiology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- FLO11 protein, S cerevisiae MeSH Browser
- Membrane Glycoproteins MeSH
- Saccharomyces cerevisiae Proteins MeSH
Saccharomyces cerevisiae is a mainly beneficial yeast, widely used in the food industry. However, there is growing evidence of its potential pathogenicity, leading to fungemia and invasive infections. The medical impact of yeast pathogens depends on formation of biofilms: multicellular structures, protected from the environment. Cell adhesion is a prerequisite of biofilm formation. We investigated the adherence of wild and genetically modified S. cerevisiae strains, formation of solid-liquid interface biofilms and associated regulation. Planktonic and static cells of wild strain BRF adhered and formed biofilms in glucose-free medium. Tup1p and Cyc8p were key positive and negative regulators, respectively. Glucose caused increased Cyc8p levels and blocked cell adhesion. Even low glucose levels, comparable with levels in the blood, allowed biofilm dispersal and release of planktonic cells. Cyc8p could thus modulate cell adhesion in different niches, dependently on environmental glucose level, e.g., high-glucose blood versus low-glucose tissues in host organisms.
- MeSH
- Bacterial Adhesion MeSH
- Biofilms growth & development MeSH
- Glucose metabolism MeSH
- Nuclear Proteins genetics metabolism MeSH
- Culture Media chemistry MeSH
- Mutation MeSH
- Surface Properties MeSH
- Gene Expression Regulation, Fungal MeSH
- Repressor Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae genetics physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- CYC8 protein, S cerevisiae MeSH Browser
- Glucose MeSH
- Nuclear Proteins MeSH
- Culture Media MeSH
- Repressor Proteins MeSH
- Saccharomyces cerevisiae Proteins MeSH
- TUP1 protein, S cerevisiae MeSH Browser
Yeasts create multicellular structures of varying complexity, such as more complex colonies and biofilms and less complex flocs, each of which develops via different mechanisms. Colony biofilms originate from one or more cells that, through growth and division, develop a complicated three-dimensional structure consisting of aerial parts, agar-embedded invasive parts and a central cavity, filled with extracellular matrix. In contrast, flocs arise relatively quickly by aggregation of planktonic cells growing in liquid cultures after they reach the appropriate growth phase and/or exhaust nutrients such as glucose. Creation of both types of structures is dependent on the presence of flocculins: Flo11p in the former case and Flo1p in the latter. We recently showed that formation of both types of structures by wild Saccharomyces cerevisiae strain BR-F is regulated via transcription regulators Tup1p and Cyc8p, but in a divergent manner. Biofilm formation is regulated by Cyc8p and Tup1p antagonistically: Cyc8p functions as a repressor of FLO11 gene expression and biofilm formation, whereas Tup1p counteracts the Cyc8p repressor function and positively regulates biofilm formation and Flo11p expression. In addition, Tup1p stabilizes Flo11p probably by repressing a gene coding for a cell wall or extracellular protease that is involved in Flo11p degradation. In contrast, formation of BR-F flocs is co-repressed by the Cyc8p-Tup1p complex. These findings point to different mechanisms involved in yeast multicellularity.
- Keywords
- Adhesion and invasion, Colony biofilm, Cyc8p and Tup1p, Flocculation, Yeast multicellular structures,
- MeSH
- Biofilms MeSH
- Cell Wall genetics metabolism MeSH
- Species Specificity MeSH
- Nuclear Proteins genetics metabolism MeSH
- Gene Expression Regulation, Fungal * MeSH
- Repressor Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae classification genetics physiology MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- CYC8 protein, S cerevisiae MeSH Browser
- Nuclear Proteins MeSH
- Repressor Proteins MeSH
- Saccharomyces cerevisiae Proteins MeSH
- TUP1 protein, S cerevisiae MeSH Browser
Yeast biofilms are complex multicellular structures, in which the cells are well protected against drugs and other treatments and thus highly resistant to antifungal therapies. Colony biofilms represent an ideal system for studying molecular mechanisms and regulations involved in development and internal organization of biofilm structure as well as those that are involved in fungal domestication. We have identified here antagonistic functional interactions between transcriptional regulators Cyc8p and Tup1p that modulate the life-style of natural S. cerevisiae strains between biofilm and domesticated mode. Herein, strains with different levels of Cyc8p and Tup1p regulators were constructed, analyzed for processes involved in colony biofilm development and used in the identification of modes of regulation of Flo11p, a key adhesin in biofilm formation. Our data show that Tup1p and Cyc8p regulate biofilm formation in the opposite manner, being positive and negative regulators of colony complexity, cell-cell interaction and adhesion to surfaces. Notably, in-depth analysis of regulation of expression of Flo11p adhesin revealed that Cyc8p itself is the key repressor of FLO11 expression, whereas Tup1p counteracts Cyc8p's repressive function and, in addition, counters Flo11p degradation by an extracellular protease. Interestingly, the opposing actions of Tup1p and Cyc8p concern processes crucial to the biofilm mode of yeast multicellularity, whereas other multicellular processes such as cell flocculation are co-repressed by both regulators. This study provides insight into the mechanisms regulating complexity of the biofilm lifestyle of yeast grown on semisolid surfaces.
- MeSH
- Biofilms * MeSH
- Cell Adhesion physiology MeSH
- Nuclear Proteins genetics metabolism MeSH
- Membrane Glycoproteins genetics metabolism MeSH
- Cell Communication physiology MeSH
- Gene Expression Regulation, Fungal * MeSH
- Repressor Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- CYC8 protein, S cerevisiae MeSH Browser
- FLO11 protein, S cerevisiae MeSH Browser
- Nuclear Proteins MeSH
- Membrane Glycoproteins MeSH
- Repressor Proteins MeSH
- Saccharomyces cerevisiae Proteins MeSH
- TUP1 protein, S cerevisiae MeSH Browser