Most cited article - PubMed ID 21935410
The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis
Metamonada is a eukaryotic supergroup of free-living and parasitic anaerobic protists. Their characteristic feature is the presence of highly reduced mitochondria that have lost the ability to produce ATP by oxidative phosphorylation and in some cases even by substrate phosphorylation, with all ATP being imported from the cytosol. Given this striking difference in cellular ATP metabolism when compared to aerobic mitochondria, we studied the presence of mitochondrial carrier proteins (MCPs) mediating the transport of ATP across the inner mitochondrial membrane. Our bioinformatic analyses revealed remarkable reduction of MCP repertoire in Metamonada with striking loss of the major ADP/ATP carrier (AAC). Instead, nearly all species retained carriers orthologous to human SLC25A43 protein, a little-characterized MCP. Heterologous expression of metamonad SLC25A43 carriers confirmed their mitochondrial localization, and functional analysis revealed that SLC25A43 orthologues represent a distinct group of ATP transporters, which we designate as ATP-importing carriers (AIC). Together, our findings suggest that AIC facilitate the ATP import into highly reduced anaerobic mitochondria, compensating for their diminished or absent energy metabolism.
- Keywords
- ADP/ATP carrier, Metamonada, SLC25A43, mitochondrial carrier protein, mitochondrial evolution, mitochondrion-related organelle,
- MeSH
- Adenosine Triphosphate * metabolism MeSH
- Anaerobiosis MeSH
- Phylogeny MeSH
- Humans MeSH
- Mitochondrial ADP, ATP Translocases * metabolism genetics MeSH
- Mitochondrial Proteins * metabolism genetics MeSH
- Mitochondria * metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adenosine Triphosphate * MeSH
- Mitochondrial ADP, ATP Translocases * MeSH
- Mitochondrial Proteins * MeSH
BACKGROUND: Hydrogenosomes are a specific type of mitochondria that have adapted for life under anaerobiosis. Limited availability of oxygen has resulted in the loss of the membrane-associated respiratory chain, and consequently in the generation of minimal inner membrane potential (Δψ), and inefficient ATP synthesis via substrate-level phosphorylation. The changes in energy metabolism are directly linked with the organelle biogenesis. In mitochondria, proteins are imported across the outer membrane via the Translocase of the Outer Membrane (TOM complex), while two Translocases of the Inner Membrane, TIM22, and TIM23, facilitate import to the inner membrane and matrix. TIM23-mediated steps are entirely dependent on Δψ and ATP hydrolysis, while TIM22 requires only Δψ. The character of the hydrogenosomal inner membrane translocase and the mechanism of translocation is currently unknown. RESULTS: We report unprecedented modification of TIM in hydrogenosomes of the human parasite Trichomonas vaginalis (TvTIM). We show that the import of the presequence-containing protein into the hydrogenosomal matrix is mediated by the hybrid TIM22-TIM23 complex that includes three highly divergent core components, TvTim22, TvTim23, and TvTim17-like proteins. The hybrid character of the TvTIM is underlined by the presence of both TvTim22 and TvTim17/23, association with small Tim chaperones (Tim9-10), which in mitochondria are known to facilitate the transfer of substrates to the TIM22 complex, and the coupling with TIM23-specific ATP-dependent presequence translocase-associated motor (PAM). Interactome reconstruction based on co-immunoprecipitation (coIP) and mass spectrometry revealed that hybrid TvTIM is formed with the compositional variations of paralogs. Single-particle electron microscopy for the 132-kDa purified TvTIM revealed the presence of a single ring of small Tims complex, while mitochondrial TIM22 complex bears twin small Tims hexamer. TvTIM is currently the only TIM visualized outside of Opisthokonta, which raised the question of which form is prevailing across eukaryotes. The tight association of the hybrid TvTIM with ADP/ATP carriers (AAC) suggests that AAC may directly supply ATP for the protein import since ATP synthesis is limited in hydrogenosomes. CONCLUSIONS: The hybrid TvTIM in hydrogenosomes represents an original structural solution that evolved for protein import when Δψ is negligible and remarkable example of evolutionary adaptation to an anaerobic lifestyle.
- Keywords
- Trichomonas vaginalis, Hydrogenosomes, Mitochondria, Parasite, Presequence translocase-associated motor, Protein import machinery, TIM22 complex, TIM23 complex,
- MeSH
- Mitochondrial Precursor Protein Import Complex Proteins MeSH
- Mitochondria metabolism MeSH
- Organelles metabolism MeSH
- Protozoan Proteins metabolism MeSH
- Protein Transport * MeSH
- Trichomonas vaginalis * metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Mitochondrial Precursor Protein Import Complex Proteins MeSH
- Protozoan Proteins MeSH
BACKGROUND: The endoplasmic reticulum (ER)-mitochondria membrane contact sites (MCS) are extensively studied in aerobic eukaryotes; however, little is known about MCS in anaerobes with reduced forms of mitochondria named hydrogenosomes. In several eukaryotic lineages, the direct physical tether between ER and the outer mitochondrial membrane is formed by ER-mitochondria encounter structure (ERMES). The complex consists of four core proteins (Mmm1, Mmm2, Mdm12, and Mdm10) which are involved in phospholipid trafficking. Here we investigated ERMES distribution in organisms bearing hydrogenosomes and employed Trichomonas vaginalis as a model to estimate ERMES cellular localization, structure, and function. RESULTS: Homology searches revealed that Parabasalia-Anaeramoebae, anaerobic jakobids, and anaerobic fungi are lineages with hydrogenosomes that retain ERMES, while ERMES components were gradually lost in Fornicata, and are absent in Preaxostyla and Archamoebae. In T. vaginalis and other parabasalids, three ERMES components were found with the expansion of Mmm1. Immunofluorescence microscopy confirmed that Mmm1 localized in ER, while Mdm12 and Mmm2 were partially localized in hydrogenosomes. Pull-down assays and mass spectrometry of the ERMES components identified a parabasalid-specific Porin2 as a substitute for the Mdm10. ERMES modeling predicted a formation of a continuous hydrophobic tunnel of TvMmm1-TvMdm12-TvMmm2 that is anchored via Porin2 to the hydrogenosomal outer membrane. Phospholipid-ERMES docking and Mdm12-phospholipid dot-blot indicated that ERMES is involved in the transport of phosphatidylinositol phosphates. The absence of enzymes involved in hydrogenosomal phospholipid metabolism implies that ERMES is not involved in the exchange of substrates between ER and hydrogenosomes but in the unidirectional import of phospholipids into hydrogenosomal membranes. CONCLUSIONS: Our investigation demonstrated that ERMES mediates ER-hydrogenosome interactions in parabasalid T. vaginalis, while the complex was lost in several other lineages with hydrogenosomes.
- Keywords
- Anaerobiosis, Cardiolipin, ERMES, Endoplasmic reticulum, Hydrogenosomes, Structure, Trichomonas vaginalis,
- MeSH
- Anaerobiosis MeSH
- Endoplasmic Reticulum * metabolism MeSH
- Phospholipids metabolism MeSH
- Membrane Proteins * metabolism MeSH
- Mitochondria metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Phospholipids MeSH
- Membrane Proteins * MeSH
Archamoebae comprises free-living or endobiotic amoebiform protists that inhabit anaerobic or microaerophilic environments and possess mitochondrion-related organelles (MROs) adapted to function anaerobically. We compared in silico reconstructed MRO proteomes of eight species (six genera) and found that the common ancestor of Archamoebae possessed very few typical components of the protein translocation machinery, electron transport chain and tricarboxylic acid cycle. On the other hand, it contained a sulphate activation pathway and bacterial iron-sulphur (Fe-S) assembly system of MIS-type. The metabolic capacity of the MROs, however, varies markedly within this clade. The glycine cleavage system is widely conserved among Archamoebae, except in Entamoeba, probably owing to its role in catabolic function or one-carbon metabolism. MRO-based pyruvate metabolism was dispensed within subgroups Entamoebidae and Rhizomastixidae, whereas sulphate activation could have been lost in isolated cases of Rhizomastix libera, Mastigamoeba abducta and Endolimax sp. The MIS (Fe-S) assembly system was duplicated in the common ancestor of Mastigamoebidae and Pelomyxidae, and one of the copies took over Fe-S assembly in their MRO. In Entamoebidae and Rhizomastixidae, we hypothesize that Fe-S cluster assembly in both compartments may be facilitated by dual localization of the single system. We could not find evidence for changes in metabolic functions of the MRO in response to changes in habitat; it appears that such environmental drivers do not strongly affect MRO reduction in this group of eukaryotes.
- Keywords
- anaerobiosis, comparative genomics, mitochondrion-related organelles, reductive evolution,
- MeSH
- Anaerobiosis MeSH
- Eukaryota * MeSH
- Mitochondria * genetics MeSH
- Sulfates MeSH
- Iron MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Sulfates MeSH
- Iron MeSH
The endobiotic flagellate Monocercomonoides exilis is the only known eukaryote to have lost mitochondria and all its associated proteins in its evolutionary past. This final stage of the mitochondrial evolutionary pathway may serve as a model to explain events at their very beginning such as the initiation of protein import. We have assessed the capability of proteins from this eukaryote to enter emerging mitochondria using a specifically designed in vitro assay. Hydrogenosomes (reduced mitochondria) of Trichomonas vaginalis were incubated with a soluble protein pool derived from a cytosolic fraction of M. exilis, and proteins entering hydrogenosomes were subsequently detected by mass spectrometry. The assay detected 19 specifically and reproducibly imported proteins, and in 14 cases the import was confirmed by the overexpression of their tagged version in T. vaginalis. In most cases, only a small portion of the signal reached the hydrogenosomes, suggesting specific but inefficient transport. Most of these proteins represent enzymes of carbon metabolism, and none exhibited clear signatures of proteins targeted to hydrogenosomes or mitochondria, which is consistent with their inefficient import. The observed phenomenon may resemble a primaeval type of protein import which might play a role in the establishment of the organelle and shaping of its proteome in the initial stages of endosymbiosis.
- Keywords
- evolution of protein targeting, hydrogenosome, mitochondrion-free eukaryote, protein import,
- MeSH
- Eukaryota * metabolism MeSH
- Mitochondria metabolism MeSH
- Organelles chemistry metabolism MeSH
- Protozoan Proteins * metabolism MeSH
- Protein Transport MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Protozoan Proteins * MeSH
The loss of mitochondria in oxymonad protists has been associated with the redirection of the essential Fe-S cluster assembly to the cytosol. Yet as our knowledge of diverse free-living protists broadens, the list of functions of their mitochondrial-related organelles (MROs) expands. We revealed another such function in the closest oxymonad relative, Paratrimastix pyriformis, after we solved the proteome of its MRO with high accuracy, using localization of organelle proteins by isotope tagging (LOPIT). The newly assigned enzymes connect to the glycine cleavage system (GCS) and produce folate derivatives with one-carbon units and formate. These are likely to be used by the cytosolic methionine cycle involved in S-adenosyl methionine recycling. The data provide consistency with the presence of the GCS in MROs of free-living species and its absence in most endobionts, which typically lose the methionine cycle and, in the case of oxymonads, the mitochondria.
- Keywords
- LOPIT, Paratrimastix, glycine cleavage system, methionine cycle, mitochondrion-related organelle, one-carbon metabolism, proteome, spatial proteomics,
- MeSH
- Eukaryota metabolism MeSH
- Methionine * MeSH
- Mitochondria * metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Methionine * MeSH
Mitochondria originated from proteobacterial endosymbionts, and their transition to organelles was tightly linked to establishment of the protein import pathways. The initial import of most proteins is mediated by the translocase of the outer membrane (TOM). Although TOM is common to all forms of mitochondria, an unexpected diversity of subunits between eukaryotic lineages has been predicted. However, experimental knowledge is limited to a few organisms, and so far, it remains unsettled whether the triplet-pore or the twin-pore structure is the generic form of TOM complex. Here, we analysed the TOM complex in hydrogenosomes, a metabolically specialised anaerobic form of mitochondria found in the excavate Trichomonas vaginalis. We demonstrate that the highly divergent β-barrel T. vaginalis TOM (TvTom)40-2 forms a translocation channel to conduct hydrogenosomal protein import. TvTom40-2 is present in high molecular weight complexes, and their analysis revealed the presence of four tail-anchored (TA) proteins. Two of them, Tom36 and Tom46, with heat shock protein (Hsp)20 and tetratricopeptide repeat (TPR) domains, can bind hydrogenosomal preproteins and most likely function as receptors. A third subunit, Tom22-like protein, has a short cis domain and a conserved Tom22 transmembrane segment but lacks a trans domain. The fourth protein, hydrogenosomal outer membrane protein 19 (Homp19) has no known homology. Furthermore, our data indicate that TvTOM is associated with sorting and assembly machinery (Sam)50 that is involved in β-barrel assembly. Visualisation of TvTOM by electron microscopy revealed that it forms three pores and has an unconventional skull-like shape. Although TvTOM seems to lack Tom7, our phylogenetic profiling predicted Tom7 in free-living excavates. Collectively, our results suggest that the triplet-pore TOM complex, composed of three conserved subunits, was present in the last common eukaryotic ancestor (LECA), while receptors responsible for substrate binding evolved independently in different eukaryotic lineages.
- MeSH
- Phylogeny MeSH
- Membrane Proteins metabolism MeSH
- Membrane Transport Proteins metabolism MeSH
- Mitochondrial Precursor Protein Import Complex Proteins MeSH
- Mitochondria metabolism MeSH
- Organelles MeSH
- Protein Transport physiology MeSH
- Mitochondrial Membrane Transport Proteins metabolism MeSH
- Carrier Proteins genetics metabolism physiology MeSH
- Trichomonas vaginalis metabolism pathogenicity physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Membrane Proteins MeSH
- Membrane Transport Proteins MeSH
- Mitochondrial Precursor Protein Import Complex Proteins MeSH
- Mitochondrial Membrane Transport Proteins MeSH
- Carrier Proteins MeSH
Mitochondrial evolution entailed the origin of protein import machinery that allows nuclear-encoded proteins to be targeted to the organelle, as well as the origin of cleavable N-terminal targeting sequences (NTS) that allow efficient sorting and import of matrix proteins. In hydrogenosomes and mitosomes, reduced forms of mitochondria with reduced proteomes, NTS-independent targeting of matrix proteins is known. Here, we studied the cellular localization of two glycolytic enzymes in the anaerobic pathogen Trichomonas vaginalis: PPi-dependent phosphofructokinase (TvPPi-PFK), which is the main glycolytic PFK activity of the protist, and ATP-dependent PFK (TvATP-PFK), the function of which is less clear. TvPPi-PFK was detected predominantly in the cytosol, as expected, while all four TvATP-PFK paralogues were imported into T. vaginalis hydrogenosomes, although none of them possesses an NTS. The heterologous expression of TvATP-PFK in Saccharomyces cerevisiae revealed an intrinsic capability of the protein to be recognized and imported into yeast mitochondria, whereas yeast ATP-PFK resides in the cytosol. TvATP-PFK consists of only a catalytic domain, similarly to "short" bacterial enzymes, while ScATP-PFK includes an N-terminal extension, a catalytic domain, and a C-terminal regulatory domain. Expression of the catalytic domain of ScATP-PFK and short Escherichia coli ATP-PFK in T. vaginalis resulted in their partial delivery to hydrogenosomes. These results indicate that TvATP-PFK and the homologous ATP-PFKs possess internal structural targeting information that is recognized by the hydrogenosomal import machinery. From an evolutionary perspective, the predisposition of ancient ATP-PFK to be recognized and imported into hydrogenosomes might be a relict from the early phases of organelle evolution.
- MeSH
- Adenosine Triphosphate pharmacology MeSH
- Diphosphates metabolism MeSH
- Ferredoxins metabolism MeSH
- Phosphofructokinases chemistry metabolism MeSH
- Phylogeny MeSH
- Mitochondria drug effects metabolism MeSH
- Molecular Sequence Data MeSH
- Organelles drug effects metabolism MeSH
- Promoter Regions, Genetic genetics MeSH
- Saccharomyces cerevisiae drug effects metabolism MeSH
- Amino Acid Sequence MeSH
- Sequence Alignment MeSH
- Protein Transport drug effects MeSH
- Trichomonas vaginalis drug effects enzymology MeSH
- Hydrogen metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine Triphosphate MeSH
- Diphosphates MeSH
- Ferredoxins MeSH
- Phosphofructokinases MeSH
- Hydrogen MeSH
The origin of protein import was a key step in the endosymbiotic acquisition of mitochondria. Though the main translocon of the mitochondrial outer membrane, TOM40, is ubiquitous among organelles of mitochondrial ancestry, the transit peptides, or N-terminal targeting sequences (NTSs), recognised by the TOM complex, are not. To better understand the nature of evolutionary conservation in mitochondrial protein import, we investigated the targeting behavior of Trichomonas vaginalis hydrogenosomal proteins in Saccharomyces cerevisiae and vice versa. Hydrogenosomes import yeast mitochondrial proteins even in the absence of their native NTSs, but do not import yeast cytosolic proteins. Conversely, yeast mitochondria import hydrogenosomal proteins with and without their short NTSs. Conservation of an NTS-independent mitochondrial import route from excavates to opisthokonts indicates its presence in the eukaryote common ancestor. Mitochondrial protein import is known to entail electrophoresis of positively charged NTSs across the electrochemical gradient of the inner mitochondrial membrane. Our present findings indicate that mitochondrial transit peptides, which readily arise from random sequences, were initially selected as a signal for charge-dependent protein targeting specifically to the mitochondrial matrix. Evolutionary loss of the electron transport chain in hydrogenosomes and mitosomes lifted the selective constraints that maintain positive charge in NTSs, allowing first the NTS charge, and subsequently the NTS itself, to be lost. This resulted in NTS-independent matrix targeting, which is conserved across the evolutionary divide separating trichomonads and yeast, and which we propose is the ancestral state of mitochondrial protein import.
- Keywords
- TOM/TIM, hydrogenosomes, mitochondria, mitosomes, protein import,
- MeSH
- Mitochondrial Proteins chemistry metabolism MeSH
- Mitochondria metabolism MeSH
- Evolution, Molecular * MeSH
- Protein Sorting Signals * MeSH
- Saccharomyces cerevisiae Proteins chemistry metabolism MeSH
- Saccharomyces cerevisiae metabolism MeSH
- Protein Transport MeSH
- Trichomonas vaginalis metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Mitochondrial Proteins MeSH
- Protein Sorting Signals * MeSH
- Saccharomyces cerevisiae Proteins MeSH
Giardia intestinalis parasites contain mitosomes, one of the simplest mitochondrion-related organelles. Strategies to identify the functions of mitosomes have been limited mainly to homology detection, which is not suitable for identifying species-specific proteins and their functions. An in vivo enzymatic tagging technique based on the Escherichia coli biotin ligase (BirA) has been introduced to G. intestinalis; this method allows for the compartment-specific biotinylation of a protein of interest. Known proteins involved in the mitosomal protein import were in vivo tagged, cross-linked, and used to copurify complexes from the outer and inner mitosomal membranes in a single step. New proteins were then identified by mass spectrometry. This approach enabled the identification of highly diverged mitosomal Tim44 (GiTim44), the first known component of the mitosomal inner membrane translocase (TIM). In addition, our subsequent bioinformatics searches returned novel diverged Tim44 paralogs, which mediate the translation and mitosomal insertion of mitochondrially encoded proteins in other eukaryotes. However, most of the identified proteins are specific to G. intestinalis and even absent from the related diplomonad parasite Spironucleus salmonicida, thus reflecting the unique character of the mitosomal metabolism. The in vivo enzymatic tagging also showed that proteins enter the mitosome posttranslationally in an unfolded state and without vesicular transport.
- MeSH
- Biotinylation MeSH
- Escherichia coli enzymology MeSH
- Cell Fractionation MeSH
- Giardia lamblia chemistry cytology metabolism MeSH
- Giardiasis parasitology MeSH
- Mass Spectrometry MeSH
- Humans MeSH
- Carbon-Nitrogen Ligases metabolism MeSH
- Models, Molecular MeSH
- Molecular Sequence Data MeSH
- Organelles chemistry metabolism MeSH
- Escherichia coli Proteins metabolism MeSH
- Protozoan Proteins analysis isolation & purification metabolism MeSH
- Repressor Proteins metabolism MeSH
- Amino Acid Sequence MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- birA protein, E coli MeSH Browser
- Carbon-Nitrogen Ligases MeSH
- Escherichia coli Proteins MeSH
- Protozoan Proteins MeSH
- Repressor Proteins MeSH