Nejvíce citovaný článek - PubMed ID 22055836
Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef
A considerable part of the diversity of eukaryotic phototrophs consists of algae with plastids that evolved from endosymbioses between two eukaryotes. These complex plastids are characterized by a high number of envelope membranes (more than two) and some of them contain a residual nucleus of the endosymbiotic alga called a nucleomorph. Complex plastid-bearing algae are thus chimeric cell assemblies, eukaryotic symbionts living in a eukaryotic host. In contrast, the primary plastids of the Archaeplastida (plants, green algae, red algae, and glaucophytes) possibly evolved from a single endosymbiosis with a cyanobacterium and are surrounded by two membranes. Complex plastids have been acquired several times by unrelated groups of eukaryotic heterotrophic hosts, suggesting that complex plastids are somewhat easier to obtain than primary plastids. Evidence suggests that complex plastids arose twice independently in the green lineage (euglenophytes and chlorarachniophytes) through secondary endosymbiosis, and four times in the red lineage, first through secondary endosymbiosis in cryptophytes, then by higher-order events in stramenopiles, alveolates, and haptophytes. Engulfment of primary and complex plastid-containing algae by eukaryotic hosts (secondary, tertiary, and higher-order endosymbioses) is also responsible for numerous plastid replacements in dinoflagellates. Plastid endosymbiosis is accompanied by massive gene transfer from the endosymbiont to the host nucleus and cell adaptation of both endosymbiotic partners, which is related to the trophic switch to phototrophy and loss of autonomy of the endosymbiont. Such a process is essential for the metabolic integration and division control of the endosymbiont in the host. Although photosynthesis is the main advantage of acquiring plastids, loss of photosynthesis often occurs in algae with complex plastids. This chapter summarizes the essential knowledge of the acquisition, evolution, and function of complex plastids.
- Klíčová slova
- Complex endosymbiosis, Plastid replacement, Reductive evolution,
- MeSH
- biologická evoluce * MeSH
- fylogeneze MeSH
- plastidy genetika metabolismus MeSH
- Rhodophyta * genetika MeSH
- rostliny genetika MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
Chromerids are a group of alveolates, found in corals, that show peculiar morphological and genomic features. These organisms are evolutionary placed in-between symbiotic dinoflagellates and parasitic apicomplexans. There are two known species of chromerids: Chromera velia and Vitrella brassicaformis. Here, the biochemical composition of the C. velia cell wall was analyzed. Several polysaccharides adorn this structure, with glucose being the most abundant monosaccharide (approx. 80%) and predominantly 4-linked (approx. 60%), suggesting that the chromerids cell wall is mostly cellulosic. The presence of cellulose was cytochemically confirmed with calcofluor white staining of the algal cell. The remaining wall polysaccharides, assuming structures are similar to those of higher plants, are indicative of a mixture of galactans, xyloglucans, heteroxylans, and heteromannans. The present work provides, for the first time, insights into the outermost layers of the photosynthetic alveolate C. velia.
- Klíčová slova
- Chromera velia, Alveolata, calcofluor white, cell wall, cellulose, chromerids, monosaccharide linkage analysis,
- MeSH
- Alveolata * MeSH
- buněčná stěna MeSH
- fotosyntéza MeSH
- fylogeneze MeSH
- polysacharidy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polysacharidy MeSH
Heme biosynthesis is essential for almost all living organisms. Despite its conserved function, the pathway's enzymes can be located in a remarkable diversity of cellular compartments in different organisms. This location does not always reflect their evolutionary origins, as might be expected from the history of their acquisition through endosymbiosis. Instead, the final subcellular localization of the enzyme reflects multiple factors, including evolutionary origin, demand for the product, availability of the substrate, and mechanism of pathway regulation. The biosynthesis of heme in the apicomonad Chromera velia follows a chimeric pathway combining heme elements from the ancient algal symbiont and the host. Computational analyses using different algorithms predict complex targeting patterns, placing enzymes in the mitochondrion, plastid, endoplasmic reticulum, or the cytoplasm. We employed heterologous reporter gene expression in the apicomplexan parasite Toxoplasma gondii and the diatom Phaeodactylum tricornutum to experimentally test these predictions. 5-aminolevulinate synthase was located in the mitochondria in both transfection systems. In T. gondii, the two 5-aminolevulinate dehydratases were located in the cytosol, uroporphyrinogen synthase in the mitochondrion, and the two ferrochelatases in the plastid. In P. tricornutum, all remaining enzymes, from ALA-dehydratase to ferrochelatase, were placed either in the endoplasmic reticulum or in the periplastidial space.
- Klíčová slova
- Chromera velia, heterologous expression, predictions, tetrapyrrole biosynthesis,
- MeSH
- Alveolata fyziologie MeSH
- Apicomplexa metabolismus MeSH
- biologický transport MeSH
- hem metabolismus MeSH
- metabolické sítě a dráhy * MeSH
- mitochondrie genetika metabolismus ultrastruktura MeSH
- molekulární evoluce MeSH
- protozoální proteiny chemie genetika metabolismus MeSH
- regulace genové exprese enzymů MeSH
- rozsivky metabolismus MeSH
- sekvence aminokyselin MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hem MeSH
- protozoální proteiny MeSH
Fatty acids are essential components of biological membranes, important for the maintenance of cellular structures, especially in organisms with complex life cycles like protozoan parasites. Apicomplexans are obligate parasites responsible for various deadly diseases of humans and livestock. We analyzed the fatty acids produced by the closest phototrophic relatives of parasitic apicomplexans, the chromerids Chromera velia and Vitrella brassicaformis, and investigated the genes coding for enzymes involved in fatty acids biosynthesis in chromerids, in comparison to their parasitic relatives. Based on evidence from genomic and metabolomic data, we propose a model of fatty acid synthesis in chromerids: the plastid-localized FAS-II pathway is responsible for the de novo synthesis of fatty acids reaching the maximum length of 18 carbon units. Short saturated fatty acids (C14:0-C18:0) originate from the plastid are then elongated and desaturated in the cytosol and the endoplasmic reticulum. We identified giant FAS I-like multi-modular enzymes in both chromerids, which seem to be involved in polyketide synthesis and fatty acid elongation. This full-scale description of the biosynthesis of fatty acids and their derivatives provides important insights into the reductive evolutionary transition of a phototropic algal ancestor to obligate parasites.
- Klíčová slova
- Chromera velia, Vitrella brassicaformis, de novo biosynthesis, desaturation, elongation, evolution, fatty acids,
- MeSH
- Apicomplexa klasifikace genetika metabolismus MeSH
- biosyntetické dráhy genetika MeSH
- desaturasy mastných kyselin klasifikace genetika metabolismus MeSH
- druhová specificita MeSH
- elongasy mastných kyselin klasifikace genetika metabolismus MeSH
- fylogeneze MeSH
- lidé MeSH
- mastné kyseliny biosyntéza MeSH
- molekulární evoluce MeSH
- protozoální infekce parazitologie MeSH
- protozoální proteiny klasifikace genetika metabolismus MeSH
- synthasa mastných kyselin, typ 2 klasifikace genetika metabolismus MeSH
- synthasa mastných kyselin, typ I klasifikace genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- desaturasy mastných kyselin MeSH
- elongasy mastných kyselin MeSH
- mastné kyseliny MeSH
- protozoální proteiny MeSH
- synthasa mastných kyselin, typ 2 MeSH
- synthasa mastných kyselin, typ I MeSH
We present an easy and effective procedure to purify plastids and mitochondria from Chromera velia. Our method enables downstream analyses of protein and metabolite content of the organelles. Chromerids are alveolate algae that are the closest known phototrophic relatives to apicomplexan parasites such as Plasmodium or Toxoplasma. While genomic and transcriptomic resources for chromerids are in place, tools and experimental conditions for proteomic studies have not been developed yet. Here we describe a rapid and efficient protocol for simultaneous isolation of plastids and mitochondria from the chromerid alga Chromera velia. This procedure involves enzymatic treatment and breakage of cells, followed by differential centrifugation. While plastids sediment in the first centrifugation step, mitochondria remain in the supernatant. Subsequently, plastids can be purified from the crude pellet by centrifugation on a discontinuous 60%/70% sucrose density gradient, while mitochondria can be obtained by centrifugation on a discontinuous 33%/80% Percoll density gradient. Isolated plastids are autofluorescent, and their multi-membrane structure was confirmed by transmission electron microscopy. Fluorescent optical microscopy was used to identify isolated mitochondria stained with MitoTrackerTM green, while their intactness and membrane potential were confirmed by staining with MitoTrackerTM orange CMTMRos. Total proteins were extracted from isolated organellar fractions, and the purity of isolated organelles was confirmed using immunoblotting. Antibodies against the beta subunit of the mitochondrial ATP synthase and the plastid protochlorophyllide oxidoreductase did not cross-react on immunoblots, suggesting that each organellar fraction is free of the residues of the other. The presented protocol represents an essential step for further proteomic, organellar, and cell biological studies of C. velia and can be employed, with minor optimizations, in other thick-walled unicellular algae.
- Klíčová slova
- Chromerids, Isolation, Microalgae, Mitochondrion, Plastid,
- MeSH
- Alveolata ultrastruktura MeSH
- mikrořasy ultrastruktura MeSH
- mitochondrie ultrastruktura MeSH
- plastidy ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
Survival of phototrophic organisms depends on their ability to collect and convert enough light energy to support their metabolism. Phototrophs can extend their absorption cross section by using diverse pigments and by tuning the properties of these pigments via pigment-pigment and pigment-protein interaction. It is well known that some cyanobacteria can grow in heavily shaded habitats by utilizing far-red light harvested with far-red-absorbing chlorophylls d and f. We describe a red-shifted light-harvesting system based on chlorophyll a from a freshwater eustigmatophyte alga Trachydiscus minutus (Eustigmatophyceae, Goniochloridales). A comprehensive characterization of the photosynthetic apparatus of T. minutus is presented. We show that thylakoid membranes of T. minutus contain light-harvesting complexes of several sizes differing in the relative amount of far-red chlorophyll a forms absorbing around 700 nm. The pigment arrangement of the major red-shifted light-harvesting complex is similar to that of the red-shifted antenna of a marine alveolate alga Chromera velia. Evolutionary aspects of the algal far-red light-harvesting complexes are discussed. The presence of these antennas in eustigmatophyte algae opens up new ways to modify organisms of this promising group for effective use of far-red light in mass cultures.
- Klíčová slova
- Chromatic acclimation, Eustigmatophyta, Light-harvesting protein, Oligomeric LHC, Red-shifted LHC, Violaxanthin,
- MeSH
- biologické pigmenty metabolismus MeSH
- diuron MeSH
- fluorescenční spektrometrie MeSH
- Heterokontophyta metabolismus účinky záření MeSH
- membránové proteiny metabolismus MeSH
- sladká voda * MeSH
- světlo * MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- teplota MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické pigmenty MeSH
- diuron MeSH
- membránové proteiny MeSH
- světlosběrné proteinové komplexy MeSH
The phylum Apicomplexa (Alveolates) comprises a group of host-associated protists, predominately intracellular parasites, including devastating parasites like Plasmodium falciparum, the causative agent of malaria. One of the more fascinating characteristics of Apicomplexa is their highly reduced (and occasionally lost) remnant plastid, termed the apicoplast. Four core metabolic pathways are retained in the apicoplast: heme synthesis, iron-sulfur cluster synthesis, isoprenoid synthesis, and fatty acid synthesis. It has been suggested that one or more of these pathways are essential for plastid and plastid genome retention. The past decade has witnessed the discovery of several apicomplexan relatives, and next-generation sequencing efforts are revealing that they retain variable plastid metabolic capacities. These data are providing clues about the core genes and pathways of reduced plastids, while at the same time further confounding our view on the evolutionary history of the apicoplast. Here, we examine the evolutionary history of the apicoplast, explore plastid metabolism in Apicomplexa and their close relatives, and propose that the differences among reduced plastids result from a game of endosymbiotic roulette. Continued exploration of the Apicomplexa and their relatives is sure to provide new insights into the evolution of the apicoplast and apicomplexans as a whole.
- Klíčová slova
- Apicomplexa, Chromerid, Corallicolids, apicoplast, plastid reduction,
- MeSH
- Apicomplexa genetika metabolismus MeSH
- světlo * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Aminoacyl-tRNA synthetases (AaRSs) are enzymes that catalyze the ligation of tRNAs to amino acids. There are AaRSs specific for each amino acid in the cell. Each cellular compartment in which translation takes place (the cytosol, mitochondria, and plastids in most cases), needs the full set of AaRSs; however, individual AaRSs can function in multiple compartments due to dual (or even multiple) targeting of nuclear-encoded proteins to various destinations in the cell. We searched the genomes of the chromerids, Chromera velia and Vitrella brassicaformis, for AaRS genes: 48 genes encoding AaRSs were identified in C. velia, while only 39 AaRS genes were found in V. brassicaformis. In the latter alga, ArgRS and GluRS were each encoded by a single gene occurring in a single copy; only PheRS was found in three genes, while the remaining AaRSs were encoded by two genes. In contrast, there were nine cases for which C. velia contained three genes of a given AaRS (45% of the AaRSs), all of them representing duplicated genes, except AsnRS and PheRS, which are more likely pseudoparalogs (acquired via horizontal or endosymbiotic gene transfer). Targeting predictions indicated that AaRSs are not (or not exclusively), in most cases, used in the cellular compartment from which their gene originates. The molecular phylogenies of the AaRSs are variable between the specific types, and similar between the two investigated chromerids. While genes with eukaryotic origin are more frequently retained, there is no clear pattern of orthologous pairs between C. velia and V. brassicaformis.
- Klíčová slova
- Aminoacyl tRNA synthetase (AaRS), Chromera velia, Vitrella brassicaformis, chloroplast, evolution, mitochondrion, nucleus, protein localization,
- MeSH
- Alveolata klasifikace enzymologie genetika MeSH
- aminoacyl-tRNA-synthetasy genetika MeSH
- fylogeneze MeSH
- protozoální proteiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminoacyl-tRNA-synthetasy MeSH
- protozoální proteiny MeSH
Photosynthesis is a biochemical process essential for life, serving as the ultimate source of chemical energy for phototrophic and heterotrophic life forms. Since the machinery of the photosynthetic electron transport chain is quite complex and is unlikely to have evolved multiple independent times, it is believed that this machinery has been transferred to diverse eukaryotic organisms by endosymbiotic events involving a eukaryotic host and a phototrophic endosymbiont. Thus, photoautotrophy, as a benefit, is transmitted through the evolution of plastids. However, many eukaryotes became secondarily heterotrophic, reverting to hetero-osmotrophy, phagotrophy, or parasitism. Here, I briefly review the constructive evolution of plastid endosymbioses and the consequential switch to reductive evolution involving losses of photosynthesis and plastids and the evolution of parasitism from a photosynthetic ancestor.
- Klíčová slova
- endosymbiosis, evolution, parasitism, phagotrophy, photosynthesis, plastid, secondary heterotrophy,
- MeSH
- Chlorophyta * metabolismus mikrobiologie MeSH
- heterotrofní procesy MeSH
- symbióza * MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Endosymbioses necessitate functional cooperation of cellular compartments to avoid pathway redundancy and streamline the control of biological processes. To gain insight into the metabolic compartmentation in chromerids, phototrophic relatives to apicomplexan parasites, we prepared a reference set of proteins probably localized to mitochondria, cytosol, and the plastid, taking advantage of available genomic and transcriptomic data. Training of prediction algorithms with the reference set now allows a genome-wide analysis of protein localization in Chromera velia and Vitrella brassicaformis. We confirm that the chromerid plastids house enzymatic pathways needed for their maintenance and photosynthetic activity, but for carbon and nitrogen allocation, metabolite exchange is necessary with the cytosol and mitochondria. This indeed suggests that the regulatory mechanisms operate in the cytosol to control carbon metabolism based on the availability of both light and nutrients. We discuss that this arrangement is largely shared with apicomplexans and dinoflagellates, possibly stemming from a common ancestral metabolic architecture, and supports the mixotrophy of the chromerid algae.
- Klíčová slova
- chromerid, endosymbiosis, mixotrophy, plastid integration, prediction algorithm, protein localization,
- MeSH
- algoritmy MeSH
- Alveolata metabolismus MeSH
- cytosol metabolismus MeSH
- dusík metabolismus MeSH
- fotosyntéza genetika fyziologie MeSH
- fylogeneze MeSH
- molekulární evoluce MeSH
- symbióza genetika fyziologie MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
- uhlík MeSH