Nejvíce citovaný článek - PubMed ID 25310363
Emerging role of tissue lectins as microenvironmental effectors in tumors and wounds
Cancer-associated fibroblasts (CAFs) are an essential component of the tumour microenvironment. They represent a heterogeneous group of cells that are under the control of cancer cells and can reversely influence the cancer cell population. They affect the cancer cell differentiation status, and the migration and formation of metastases. This is achieved through the production of the extracellular matrix and numerous bioactive factors. IL-6 seems to play the central role in the communication of noncancerous and cancer cells in the tumour. This review outlines the role of exosomes in cancer cells and cancer-associated fibroblasts. Available data on the exosomal cargo, which can significantly intensify interactions in the tumour, are summarised. The role of exosomes as mediators of the dialogue between cancer cells and cancer-associated fibroblasts is discussed together with their therapeutic relevance. The functional unity of the paracrine- and exosome-mediated communication of cancer cells with the tumour microenvironment represented by CAFs is worthy of attention.
- Klíčová slova
- IL-6, cancer ecosystem, cancer microenvironment, cancer-associated fibroblast, exosome,
- MeSH
- exozómy metabolismus MeSH
- fibroblasty asociované s nádorem metabolismus MeSH
- interleukin-6 metabolismus MeSH
- lidé MeSH
- nádorové mikroprostředí MeSH
- nádory metabolismus MeSH
- parakrinní signalizace MeSH
- pohyb buněk MeSH
- proliferace buněk MeSH
- regulace genové exprese u nádorů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- IL6 protein, human MeSH Prohlížeč
- interleukin-6 MeSH
Interleukin-6 (IL-6) is a highly potent cytokine involved in multiple biological processes. It was previously reported to play a distinct role in inflammation, autoimmune and psychiatric disorders, ageing and various types of cancer. Furthermore, it is understood that IL-6 and its signaling pathways are substantial players in orchestrating the cancer microenvironment. Thus, they appear to be potential targets in anti-tumor therapy. The aim of this article is to elucidate the role of IL-6 in the tumor ecosystem and to review the possible therapeutic approaches in head and neck cancer.
- Klíčová slova
- IL-6, cancer microenvironment, head and neck cancer, targeted therapy,
- MeSH
- interleukin-6 imunologie metabolismus MeSH
- lidé MeSH
- nádorové mikroprostředí * MeSH
- nádory hlavy a krku imunologie terapie MeSH
- signální transdukce MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- interleukin-6 MeSH
Interleukin-6 (IL-6) is a cytokine with multifaceted effects playing a remarkable role in the initiation of the immune response. The increased level of this cytokine in the elderly seems to be associated with the chronic inflammatory setting of the microenvironment in aged individuals. IL-6 also represents one of the main signals in communication between cancer cells and their non-malignant neighbours within the tumour niche. IL-6 also participates in the development of a premetastatic niche and in the adjustment of the metabolism in terminal-stage patients suffering from a malignant disease. IL-6 is a fundamental factor of the cytokine storm in patients with severe COVID-19, where it is responsible for the fatal outcome of the disease. A better understanding of the role of IL-6 under physiological as well as pathological conditions and the preparation of new strategies for the therapeutic control of the IL-6 axis may help to manage the problems associated with the elderly, cancer, and serious viral infections.
- Klíčová slova
- COVID-19, IL-6, ageing, cancer ecosystem, cancer-associated fibroblasts, cytokine, cytokine storm, tumour microenvironment,
- MeSH
- COVID-19 MeSH
- interleukin-6 genetika metabolismus MeSH
- koronavirové infekce metabolismus patologie MeSH
- lidé MeSH
- nádory metabolismus patologie MeSH
- pandemie MeSH
- signální transdukce MeSH
- stárnutí metabolismus patologie MeSH
- virová pneumonie metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- interleukin-6 MeSH
The ability of horse chestnut extract (HCE) to induce contraction force in fibroblasts, a process with remarkable significance in skin repair, motivated us to evaluate its wound healing potential in a series of experiments. In the in vitro study of the ability of human dermal fibroblasts to form myofibroblast-like cells was evaluated at the protein level (Western blot and immunofluorescence). The in vivo study was conducted on male Sprague-Dawley rats with inflicted wounds (one open circular and one sutured incision) on their backs. Rats were topically treated with two tested HCE concentrations (0.1% and 1%) or sterile water. The control group remained untreated. The incisions were processed for wound tensile strength (TS) measurement whereas the open wounds were subjected to histological examination. On the in vitro level the HCE extract induced fibronectin-rich extracellular matrix formation, but did not induced α-smooth muscle actin (SMA) expression in dermal fibroblasts. The animal study revealed that HCE increased wound TS and improved collagen organization. In conclusion, the direct comparison of both basic wound models demonstrated that the healing was significantly increased following HCE, thus this extract may be found useful to improve healing of acute wounds. Nevertheless, the use of an experimental rat model warrants a direct extrapolation to the human clinical situation.
- Klíčová slova
- horse chestnut, phytotherapy, repair and regeneration, wound healing,
- MeSH
- Aesculus chemie MeSH
- extracelulární matrix účinky léků metabolismus MeSH
- hojení ran účinky léků MeSH
- krysa rodu Rattus MeSH
- molekulární struktura MeSH
- myofibroblasty účinky léků metabolismus MeSH
- pevnost v tahu MeSH
- regenerace MeSH
- rostlinné extrakty chemie farmakologie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- rostlinné extrakty MeSH
Similarly to other types of malignant tumours, the incidence of head and neck cancer is increasing globally. It is frequently associated with smoking and alcohol abuse, and in a broader sense also with prolonged exposure to these factors during ageing. A higher incidence of tumours observed in younger populations without a history of alcohol and tobacco abuse may be due to HPV infection. Malignant tumours form an intricate ecosystem of cancer cells, fibroblasts, blood/lymphatic capillaries and infiltrating immune cells. This dynamic system, the tumour microenvironment, has a significant impact on the biological properties of cancer cells. The microenvironment participates in the control of local aggressiveness of cancer cells, their growth, and their consequent migration to lymph nodes and distant organs during metastatic spread. In cancers originating from squamous epithelium, a similarity was demonstrated between the cancer microenvironment and healing wounds. In this review, we focus on the specificity of the microenvironment of head and neck cancer with emphasis on the mechanism of intercellular crosstalk manipulation for potential therapeutic application.
- Klíčová slova
- IL-6, cancer, cancer ecosystem, cancer microenvironment, cancer therapy, cancer-associated fibroblast, cytokine, extracellular matrix, tumour-associated macrophages,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
It is now suggested that the inhibition of biological programs that are associated with the tumor microenvironment may be critical to the diagnostics, prevention and treatment of cancer. On the other hand, a suitable wound microenvironment would accelerate tissue repair and prevent extensive scar formation. In the present review paper, we define key signaling molecules (growth factors, cytokines, chemokines, and galectins) involved in the formation of the tumor microenvironment that decrease overall survival and increase drug resistance in cancer suffering patients. Additional attention will also be given to show whether targeted modulation of these regulators promote tissue regeneration and wound management. Whole-genome transcriptome profiling, in vitro and animal experiments revealed that interleukin 6, interleukin 8, chemokine (C-X-C motif) ligand 1, galectin-1, and selected proteins of the extracellular matrix (e.g., fibronectin) do have similar regulation during wound healing and tumor growth. Published data demonstrate remarkable similarities between the tumor and wound microenvironments. Therefore, tailor made manipulation of cancer stroma can have important therapeutic consequences. Moreover, better understanding of cancer cell-stroma interaction can help to improve wound healing by supporting granulation tissue formation and process of reepithelization of extensive and chronic wounds as well as prevention of hypertrophic scars and formation of keloids.
- Klíčová slova
- cancer, cytokine, galectin, stem cell, tissue repair,
- MeSH
- buněčné mikroprostředí MeSH
- cytokiny metabolismus MeSH
- galektiny metabolismus MeSH
- hojení ran MeSH
- imunitní systém cytologie imunologie metabolismus MeSH
- keloid metabolismus patologie MeSH
- lidé MeSH
- mezibuněčné signální peptidy a proteiny metabolismus MeSH
- nádorové kmenové buňky metabolismus patologie MeSH
- nádorové mikroprostředí * MeSH
- nádory imunologie metabolismus patologie MeSH
- rány a poranění imunologie metabolismus patologie MeSH
- signální transdukce * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytokiny MeSH
- galektiny MeSH
- mezibuněčné signální peptidy a proteiny MeSH
Incidence of malignant melanoma is increasing globally. While the initial stages of tumors can be easily treated by a simple surgery, the therapy of advanced stages is rather limited. Melanoma cells spread rapidly through the body of a patient to form multiple metastases. Consequently, the survival rate is poor. Therefore, emphasis in melanoma research is given on early diagnosis and development of novel and more potent therapeutic options. The malignant melanoma is arising from melanocytes, cells protecting mitotically active keratinocytes against damage caused by UV light irradiation. The melanocytes originate in the neural crest and consequently migrate to the epidermis. The relationship between the melanoma cells, the melanocytes, and neural crest stem cells manifests when the melanoma cells are implanted to an early embryo: they use similar migratory routes as the normal neural crest cells. Moreover, malignant potential of these melanoma cells is overdriven in this experimental model, probably due to microenvironmental reprogramming. This observation demonstrates the crucial role of the microenvironment in melanoma biology. Indeed, malignant tumors in general represent complex ecosystems, where multiple cell types influence the growth of genetically mutated cancer cells. This concept is directly applicable to the malignant melanoma. Our review article focuses on possible strategies to modify the intercellular crosstalk in melanoma that can be employed for therapeutic purposes.
- Klíčová slova
- Cancer-associated fibroblast, Cytokine, Keratinocyte, Melanocyte, Melanoma cells, Melanoma ecosystem,
- MeSH
- časná detekce nádoru metody MeSH
- crista neuralis cytologie patologie MeSH
- indoly terapeutické užití MeSH
- keratinocyty MeSH
- lidé MeSH
- maligní melanom kůže MeSH
- melanocyty patologie MeSH
- melanom farmakoterapie epidemiologie patologie MeSH
- nádorové mikroprostředí fyziologie MeSH
- nádory kůže MeSH
- protinádorové látky terapeutické užití MeSH
- sulfonamidy terapeutické užití MeSH
- ultrafialové záření škodlivé účinky MeSH
- vemurafenib MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- indoly MeSH
- protinádorové látky MeSH
- sulfonamidy MeSH
- vemurafenib MeSH
Clinical evidence suggests that healing is faster and almost scarless at an early neonatal age in comparison with that in adults. In this study, the phenotypes of neonatal and adult dermal fibroblasts and keratinocytes (nestin, smooth muscle actin, keratin types 8, 14 and 19, and fibronectin) were compared. Furthermore, functional assays (proliferation, migration, scratch wound closure) including mutual epithelial‑mesenchymal interactions were also performed to complete the series of experiments. Positivity for nestin and α smooth muscle actin was higher in neonatal fibroblasts (NFs) when compared with their adult counterparts (adult fibroblasts; AFs). Although the proliferation of NFs and AFs was similar, they significantly differed in their migration potential. The keratinocyte experiments revealed small, poorly differentiated cells (positive for keratins 8, 14 and 19) in primary cultures isolated from neonatal tissues. Moreover, the neonatal keratinocytes exhibited significantly faster rates of healing the experimentally induced in vitro defects in comparison with adult cells. Notably, the epithelial/mesenchymal interaction studies showed that NFs in co-culture with adult keratinocytes significantly stimulated the adult epithelial cells to acquire the phenotype of small, non-confluent cells expressing markers of poor differentiation. These results indicate the important differences between neonatal and adult cells that may be associated with improved wound healing during the early neonatal period.
- MeSH
- aktiny metabolismus MeSH
- buněčná diferenciace MeSH
- crista neuralis cytologie MeSH
- dárci tkání * MeSH
- dospělí MeSH
- epitelové buňky cytologie metabolismus MeSH
- fenotyp MeSH
- fibroblasty cytologie metabolismus MeSH
- fibronektiny biosyntéza MeSH
- imunohistochemie MeSH
- keratinocyty cytologie metabolismus MeSH
- kmenové buňky metabolismus MeSH
- kokultivační techniky MeSH
- lidé MeSH
- mezoderm cytologie MeSH
- myofibroblasty cytologie MeSH
- nestin metabolismus MeSH
- neuroplasticita MeSH
- novorozenec MeSH
- pohyb buněk MeSH
- proliferace buněk MeSH
- stanovení celkové genové exprese MeSH
- stárnutí fyziologie MeSH
- vývojová regulace genové exprese MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ACTA2 protein, human MeSH Prohlížeč
- aktiny MeSH
- fibronektiny MeSH
- nestin MeSH
Estrogen deprivation is considered responsible for many age-related processes, including poor wound healing. Guided by previous observations that estradiol accelerates re‑epithelialization through estrogen receptor (ER)‑β, in the present study, we examined whether selective ER agonists [4,4',4''-(4-propyl [1H] pyrazole-1,3,5-triyl)‑trisphenol (PPT), ER‑α agonist; 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), ER‑β agonist] affect the expression of basic proliferation and differentiation markers (Ki‑67, keratin‑10, ‑14 and ‑19, galectin‑1 and Sox‑2) of keratinocytes using HaCaT cells. In parallel, ovariectomized rats were treated daily with an ER modulator, and wound tissue was removed 21 days after wounding and routinely processed for basic histological analysis. Our results revealed that the HaCaT keratinocytes expressed both ER‑α and ‑β, and thus are well-suited for studying the effects of ER agonists on epidermal regeneration. The activation of ER‑α produced a protein expression pattern similar to that observed in the control culture, with a moderate expression of Ki‑67 being observed. However, the activation of ER‑β led to an increase in cell proliferation and keratin‑19 expression, as well as a decrease in galectin‑1 expression. Fittingly, in rat wounds treated with the ER‑β agonist (DPN), epidermal regeneration was accelerated. In the present study, we provide information on the mechanisms through which estrogens affect the expression patterns of selected markers, thus modulating keratinocyte proliferation and differentiation; in addition, we demonstrate that the pharmacological activation of ER-α and -β has a direct impact on wound healing.
- MeSH
- alfa receptor estrogenů agonisté metabolismus MeSH
- beta receptor estrogenů agonisté metabolismus MeSH
- buněčná diferenciace účinky léků MeSH
- buněčné linie MeSH
- fenoly farmakologie MeSH
- hojení ran účinky léků MeSH
- keratinocyty cytologie účinky léků metabolismus patologie MeSH
- kůže účinky léků metabolismus patologie MeSH
- lidé MeSH
- nitrily farmakologie MeSH
- potkani Sprague-Dawley MeSH
- pyrazoly farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2,3-bis(4-hydroxyphenyl)-propionitrile MeSH Prohlížeč
- 4,4',4''-(4-propyl-((1)H)-pyrazole-1,3,5-triyl) tris-phenol MeSH Prohlížeč
- alfa receptor estrogenů MeSH
- beta receptor estrogenů MeSH
- fenoly MeSH
- nitrily MeSH
- pyrazoly MeSH
Epidermal stem cells (ESCs) are crucial for maintenance and self- renewal of skin epithelium and also for regular hair cycling. Their role in wound healing is also indispensable. ESCs reside in a defined outer root sheath portion of hair follicle-also known as the bulge region. ECS are also found between basal cells of the interfollicular epidermis or mucous membranes. The non-epithelial elements such as mesenchymal stem cell-like elements of dermis or surrounding adipose tissue can also contribute to this niche formation. Cancer stem cells (CSCs) participate in formation of common epithelial malignant diseases such as basal cell or squamous cell carcinoma. In this review article, we focus on the role of cancer microenvironment with emphasis on the effect of cancer-associated fibroblasts (CAFs). This model reflects various biological aspects of interaction between cancer cell and CAFs with multiple parallels to interaction of normal epidermal stem cells and their niche. The complexity of intercellular interactions within tumor stroma is depicted on example of malignant melanoma, where keratinocytes also contribute the microenvironmental landscape during early phase of tumor progression. Interactions seen in normal bulge region can therefore be an important source of information for proper understanding to melanoma. The therapeutic consequences of targeting of microenvironment in anticancer therapy and for improved wound healing are included to article.
- Klíčová slova
- cancer microenvironment, cancer-associated fibroblast, niche, stem cell, wound healing,
- MeSH
- epidermální buňky MeSH
- epitelové buňky patologie MeSH
- fibroblasty patologie MeSH
- hojení ran fyziologie MeSH
- keratinocyty patologie MeSH
- lidé MeSH
- melanom patologie MeSH
- mezenchymální kmenové buňky patologie MeSH
- nádorové kmenové buňky patologie MeSH
- nádorové mikroprostředí fyziologie MeSH
- nádory kůže patologie MeSH
- nika kmenových buněk fyziologie MeSH
- vlasový folikul cytologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH