Nejvíce citovaný článek - PubMed ID 29078369
Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early-branching trypanosomatid
BACKGROUND: In trypanosomatids, a group of unicellular eukaryotes that includes numerous important human parasites, cis-splicing has been previously reported for only two genes: a poly(A) polymerase and an RNA helicase. Conversely, trans-splicing, which involves the attachment of a spliced leader sequence, is observed for nearly every protein-coding transcript. So far, our understanding of splicing in this protistan group has stemmed from the analysis of only a few medically relevant species. In this study, we used an extensive dataset encompassing all described trypanosomatid genera to investigate the distribution of intron-containing genes and the evolution of splice sites. RESULTS: We identified a new conserved intron-containing gene encoding an RNA-binding protein that is universally present in Kinetoplastea. We show that Perkinsela sp., a kinetoplastid endosymbiont of Amoebozoa, represents the first eukaryote completely devoid of cis-splicing, yet still preserving trans-splicing. We also provided evidence for reverse transcriptase-mediated intron loss in Kinetoplastea, extensive conservation of 5' splice sites, and the presence of non-coding RNAs within a subset of retained trypanosomatid introns. CONCLUSIONS: All three intron-containing genes identified in Kinetoplastea encode RNA-interacting proteins, with a potential to fine-tune the expression of multiple genes, thus challenging the perception of cis-splicing in these protists as a mere evolutionary relic. We suggest that there is a selective pressure to retain cis-splicing in trypanosomatids and that this is likely associated with overall control of mRNA processing. Our study provides new insights into the evolution of introns and, consequently, the regulation of gene expression in eukaryotes.
- Klíčová slova
- Introns, Kinetoplastea, Poly(A) polymerase, RNA helicase, RNA-binding protein, Splicing, Trypanosomatidae,
- MeSH
- fylogeneze MeSH
- introny * genetika MeSH
- Kinetoplastida genetika MeSH
- molekulární evoluce MeSH
- protozoální geny genetika MeSH
- protozoální proteiny genetika MeSH
- trans-splicing * genetika MeSH
- Trypanosomatina genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protozoální proteiny MeSH
The nuclear envelope (NE) separates translation and transcription and is the location of multiple functions, including chromatin organization and nucleocytoplasmic transport. The molecular basis for many of these functions have diverged between eukaryotic lineages. Trypanosoma brucei, a member of the early branching eukaryotic lineage Discoba, highlights many of these, including a distinct lamina and kinetochore composition. Here, we describe a cohort of proteins interacting with both the lamina and NPC, which we term lamina-associated proteins (LAPs). LAPs represent a diverse group of proteins, including two candidate NPC-anchoring pore membrane proteins (POMs) with architecture conserved with S. cerevisiae and H. sapiens, and additional peripheral components of the NPC. While many of the LAPs are Kinetoplastid specific, we also identified broadly conserved proteins, indicating an amalgam of divergence and conservation within the trypanosome NE proteome, highlighting the diversity of nuclear biology across the eukaryotes, increasing our understanding of eukaryotic and NPC evolution.
- Klíčová slova
- AlphaFold, Nucleus, comparative genomics, molecular evolution, nuclear lamina, nuclear pore complex,
- MeSH
- jaderný obal * metabolismus MeSH
- jaderný pór metabolismus MeSH
- komplex proteinů jaderného póru metabolismus MeSH
- lidé MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- Trypanosoma * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- komplex proteinů jaderného póru MeSH
Isocitrate dehydrogenase is an enzyme converting isocitrate to α-ketoglutarate in the canonical tricarboxylic acid (TCA) cycle. There are three different types of isocitrate dehydrogenase documented in eukaryotes. Our study points out the complex evolutionary history of isocitrate dehydrogenases across kinetoplastids, where the common ancestor of Trypanosomatidae and Bodonidae was equipped with two isoforms of the isocitrate dehydrogenase enzyme: the NADP+-dependent isocitrate dehydrogenase 1 with possibly dual localization in the cytosol and mitochondrion and NADP+-dependent mitochondrial isocitrate dehydrogenase 2. In the extant trypanosomatids, isocitrate dehydrogenase 1 is present only in a few species suggesting that it was lost upon separation of Trypanosoma spp. and replaced by the mainly NADP+-dependent cytosolic isocitrate dehydrogenase 3 of bacterial origin in all the derived lineages. In this study, we experimentally demonstrate that the omnipresent isocitrate dehydrogenase 2 has a dual localization in both mitochondrion and cytosol in at least four species that possess only this isoform. The apparent lack of the NAD+-dependent isocitrate dehydrogenase activity in trypanosomatid mitochondrion provides further support to the existence of the noncanonical TCA cycle across trypanosomatids and the bidirectional activity of isocitrate dehydrogenase 3 when operating with NADP+ cofactor instead of NAD+. This observation can be extended to all 17 species analyzed in this study, except for Leishmania mexicana, which showed only low isocitrate dehydrogenase activity in the cytosol. The variability in isocitrate oxidation capacity among species may reflect the distinct metabolic strategies and needs for reduced cofactors in particular environments.
- Klíčová slova
- Krebs cycle, NAD+, NADP+, TCA cycle, cofactor preference, isocitrate dehydrogenase,
- MeSH
- isocitrátdehydrogenasa * genetika metabolismus MeSH
- isocitráty metabolismus MeSH
- NAD * metabolismus MeSH
- NADP metabolismus MeSH
- protein - isoformy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- isocitrátdehydrogenasa * MeSH
- isocitráty MeSH
- isocitric acid MeSH Prohlížeč
- NAD * MeSH
- NADP MeSH
- protein - isoformy MeSH
BACKGROUND: Protists of the family Trypanosomatidae (phylum Euglenozoa) have gained notoriety as parasites affecting humans, domestic animals, and agricultural plants. However, the true extent of the group's diversity spreads far beyond the medically and veterinary relevant species. We address several knowledge gaps in trypanosomatid research by undertaking sequencing, assembly, and analysis of genomes from previously overlooked representatives of this protistan group. RESULTS: We assembled genomes for twenty-one trypanosomatid species, with a primary focus on insect parasites and Trypanosoma spp. parasitizing non-human hosts. The assemblies exhibit sizes consistent with previously sequenced trypanosomatid genomes, ranging from approximately 18 Mb for Obscuromonas modryi to 35 Mb for Crithidia brevicula and Zelonia costaricensis. Despite being the smallest, the genome of O. modryi has the highest content of repetitive elements, contributing nearly half of its total size. Conversely, the highest proportion of unique DNA is found in the genomes of Wallacemonas spp., with repeats accounting for less than 8% of the assembly length. The majority of examined species exhibit varying degrees of aneuploidy, with trisomy being the most frequently observed condition after disomy. CONCLUSIONS: The genome of Obscuromonas modryi represents a very unusual, if not unique, example of evolution driven by two antidromous forces: i) increasing dependence on the host leading to genomic shrinkage and ii) expansion of repeats causing genome enlargement. The observed variation in somy within and between trypanosomatid genera suggests that these flagellates are largely predisposed to aneuploidy and, apparently, exploit it to gain a fitness advantage. High heterogeneity in the genome size, repeat content, and variation in chromosome copy numbers in the newly-sequenced species highlight the remarkable genome plasticity exhibited by trypanosomatid flagellates. These new genome assemblies are a robust foundation for future research on the genetic basis of life cycle changes and adaptation to different hosts in the family Trypanosomatidae.
- Klíčová slova
- Dixenous, Genome assembly, Monoxenous, Parasite, Protist, Trypanosomatids, Whole-genome sequencing,
- MeSH
- aklimatizace MeSH
- aneuploidie MeSH
- délka genomu MeSH
- Trypanosomatina * genetika MeSH
- zemědělství MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Attachment to a substrate to maintain position in a specific ecological niche is a common strategy across biology, especially for eukaryotic parasites. During development in the sand fly vector, the eukaryotic parasite Leishmania adheres to the stomodeal valve, as the specialised haptomonad form. Dissection of haptomonad adhesion is a critical step for understanding the complete life cycle of Leishmania. Nevertheless, haptomonad studies are limited, as this is a technically challenging life cycle form to investigate. Here, we have combined three-dimensional electron microscopy approaches, including serial block face scanning electron microscopy (SBFSEM) and serial tomography to dissect the organisation and architecture of haptomonads in the sand fly. We showed that the attachment plaque contains distinct structural elements. Using time-lapse light microscopy of in vitro haptomonad-like cells, we identified five stages of haptomonad-like cell differentiation, and showed that calcium is necessary for Leishmania adhesion to the surface in vitro. This study provides the structural and regulatory foundations of Leishmania adhesion, which are critical for a holistic understanding of the Leishmania life cycle.
- Klíčová slova
- Leishmania, cell adhesion, cell biology, host-parasite interaction, infectious disease, microbiology, sand fly, serial block face scanning electron microscopy, serial section electron microscopy tomography,
- MeSH
- elektronová mikroskopie MeSH
- Leishmania * MeSH
- Psychodidae * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
- Klíčová slova
- genomics, next-generation sequencing, trypanosomatids,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Leishmania parasites possess a unique and complex cytoskeletal structure termed flagellum attachment zone (FAZ) connecting the base of the flagellum to one side of the flagellar pocket (FP), an invagination of the cell body membrane and the sole site for endocytosis and exocytosis. This structure is involved in FP architecture and cell morphogenesis, but its precise role and molecular composition remain enigmatic. Here, we characterized Leishmania FAZ7, the only known FAZ protein containing a kinesin motor domain, and part of a clade of trypanosomatid-specific kinesins with unknown functions. The two paralogs of FAZ7, FAZ7A and FAZ7B, display different localizations and functions. FAZ7A localizes at the basal body, while FAZ7B localizes at the distal part of the FP, where the FAZ structure is present in Leishmania. While null mutants of FAZ7A displayed normal growth rates, the deletion of FAZ7B impaired cell growth in both promastigotes and amastigotes of Leishmania. The kinesin activity is crucial for its function. Deletion of FAZ7B resulted in altered cell division, cell morphogenesis (including flagellum length), and FP structure and function. Furthermore, knocking out FAZ7B induced a mis-localization of two of the FAZ proteins, and disrupted the molecular organization of the FP collar, affecting the localization of its components. Loss of the kinesin FAZ7B has important consequences in the insect vector and mammalian host by reducing proliferation in the sand fly and pathogenicity in mice. Our findings reveal the pivotal role of the only FAZ kinesin as part of the factors important for a successful life cycle of Leishmania.
- MeSH
- flagella metabolismus MeSH
- kineziny metabolismus MeSH
- Leishmania mexicana patogenita fyziologie MeSH
- leishmanióza metabolismus MeSH
- morfogeneze MeSH
- myši MeSH
- proliferace buněk MeSH
- protozoální proteiny metabolismus MeSH
- Psychodidae MeSH
- virulence fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kineziny MeSH
- protozoální proteiny MeSH
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
- Klíčová slova
- Diplonemida, Euglenida, Kinetoplastida, microbial eukaryotes, phylogeny, systematics,
- MeSH
- ekosystém MeSH
- Euglenozoa klasifikace genetika fyziologie virologie MeSH
- fylogeneze MeSH
- Mimiviridae patogenita MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
BACKGROUND: The family Trypanosomatidae encompasses parasitic flagellates, some of which cause serious vector-transmitted diseases of humans and domestic animals. However, insect-restricted parasites represent the ancestral and most diverse group within the family. They display a range of unusual features and their study can provide insights into the biology of human pathogens. Here we describe Vickermania, a new genus of fly midgut-dwelling parasites that bear two flagella in contrast to other trypanosomatids, which are unambiguously uniflagellate. RESULTS: Vickermania has an odd cell cycle, in which shortly after the division the uniflagellate cell starts growing a new flagellum attached to the old one and preserves their contact until the late cytokinesis. The flagella connect to each other throughout their whole length and carry a peculiar seizing structure with a paddle-like apex and two lateral extensions at their tip. In contrast to typical trypanosomatids, which attach to the insect host's intestinal wall, Vickermania is separated from it by a continuous peritrophic membrane and resides freely in the fly midgut lumen. CONCLUSIONS: We propose that Vickermania developed a survival strategy that relies on constant movement preventing discharge from the host gut due to intestinal peristalsis. Since these parasites cannot attach to the midgut wall, they were forced to shorten the period of impaired motility when two separate flagella in dividing cells interfere with each other. The connection between the flagella ensures their coordinate movement until the separation of the daughter cells. We propose that Trypanosoma brucei, a severe human pathogen, during its development in the tsetse fly midgut faces the same conditions and follows the same strategy as Vickermania by employing an analogous adaptation, the flagellar connector.
- Klíčová slova
- Cell cycle, Flagella connector, Herpetomonas muscarum ingenoplastis, Trypanosoma brucei,
- MeSH
- flagella fyziologie MeSH
- interakce hostitele a parazita * MeSH
- moucha tse-tse parazitologie MeSH
- peristaltika MeSH
- Trypanosomatina klasifikace cytologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The Euglenozoa are a protist group with an especially rich history of evolutionary diversity. They include diplonemids, representing arguably the most species-rich clade of marine planktonic eukaryotes; trypanosomatids, which are notorious parasites of medical and veterinary importance; and free-living euglenids. These different lifestyles, and particularly the transition from free-living to parasitic, likely require different metabolic capabilities. We carried out a comparative genomic analysis across euglenozoan diversity to see how changing repertoires of enzymes and structural features correspond to major changes in lifestyles. RESULTS: We find a gradual loss of genes encoding enzymes in the evolution of kinetoplastids, rather than a sudden decrease in metabolic capabilities corresponding to the origin of parasitism, while diplonemids and euglenids maintain more metabolic versatility. Distinctive characteristics of molecular machines such as kinetochores and the pre-replication complex that were previously considered specific to parasitic kinetoplastids were also identified in their free-living relatives. Therefore, we argue that they represent an ancestral rather than a derived state, as thought until the present. We also found evidence of ancient redundancy in systems such as NADPH-dependent thiol-redox. Only the genus Euglena possesses the combination of trypanothione-, glutathione-, and thioredoxin-based systems supposedly present in the euglenozoan common ancestor, while other representatives of the phylum have lost one or two of these systems. Lastly, we identified convergent losses of specific metabolic capabilities between free-living kinetoplastids and ciliates. Although this observation requires further examination, it suggests that certain eukaryotic lineages are predisposed to such convergent losses of key enzymes or whole pathways. CONCLUSIONS: The loss of metabolic capabilities might not be associated with the switch to parasitic lifestyle in kinetoplastids, and the presence of a highly divergent (or unconventional) kinetochore machinery might not be restricted to this protist group. The data derived from the transcriptomes of free-living early branching prokinetoplastids suggests that the pre-replication complex of Trypanosomatidae is a highly divergent version of the conventional machinery. Our findings shed light on trends in the evolution of metabolism in protists in general and open multiple avenues for future research.
- Klíčová slova
- Comparative genomics, Diplonemea, Euglenida, Evolution, Kinetochores, Kinetoplastea, Metabolism, Trypanothione,
- MeSH
- biologická evoluce * MeSH
- Euglenida genetika metabolismus MeSH
- Euglenozoa genetika metabolismus MeSH
- genom protozoální * MeSH
- Kinetoplastida genetika metabolismus MeSH
- molekulární evoluce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH