Six new pyranonaphthoquinone derivatives, gunacin A-E (2-7), along with the known compounds gunacin (1) and the isocoumarin derivative (+) orthosporin (8), were isolated from the fungus Exobasidium sp. Their chemical structures were elucidated by X-ray crystallography, extensive spectroscopic analysis supported by ROESY experiments, and mass spectrometry. Two tested compounds (1, 5) demonstrated high activity against Leishmania mexicana and four salivarian Trypanosoma species, with the lowest detected EC50 value of 0.02-0.24 μM, a value that is comparable to those of currently used drugs. In addition, compounds 1, 3, 5, 6, and 7 demonstrated antibacterial properties at micromolar concentrations, while 1, 5, 6, and 7 exhibited moderate antifungal activity (MIC 33.3-66.7 μM). In cytotoxicity assays, the compounds exhibited a range of toxicity against mammalian Jurkat, RAT2, MDCK cell lines, HeLa cells, and fibroblasts, with inhibition levels varying from strong to minimal inhibition (EC50 = 0.03-125 μM). This study is among the first to explore Exobasidium, a genus of phytopathogenic fungi and highlights the untapped potential of smut fungi (Basidiomycota: Ustilaginomycetes). The discovery of gunacins, which exhibit potent antiprotozoal activity at submicromolar concentrations, suggests a promising avenue for the development of antiprotozoal agents.
- Publication type
- Journal Article MeSH
Leishmania is a genus of the family Trypanosomatidae that unites obligatory parasitic flagellates causing a variety of vector-borne diseases collectively called leishmaniasis. The symptoms range from relatively innocuous skin lesions to complete failures of visceral organs. The disease is exacerbated if a parasite harbors Leishmania RNA viruses (LRVs) of the family Pseudototiviridae. Screening a novel isolate of L. braziliensis, we revealed that it possesses not a toti-, but a bunyavirus of the family Leishbuviridae. To the best of our knowledge, this is a very first discovery of a bunyavirus infecting a representative of the Leishmania subgenus Viannia. We suggest that these viruses may serve as potential factors of virulence in American leishmaniasis and encourage researchers to test leishmanial strains for the presence of not only LRVs, but also other RNA viruses.
- MeSH
- Bunyaviridae classification genetics isolation & purification MeSH
- Phylogeny MeSH
- Leishmania braziliensis * genetics isolation & purification MeSH
- Humans MeSH
- Orthobunyavirus genetics classification isolation & purification physiology MeSH
- RNA Viruses genetics classification isolation & purification MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Leishmaniaviruses (LRVs) have been demonstrated to enhance progression of leishmaniasis, a vector-transmitted disease with a wide range of clinical manifestations that is caused by flagellates of the genus Leishmania. Here, we used two previously proposed strategies of the LRV ablation to shed light on the relationships of two Leishmania spp. with their respective viral species (L. guyanensis, LRV1 and L. major, LRV2) and demonstrated considerable difference between two studied systems. LRV1 could be easily eliminated by the expression of exogenous capsids regardless of their origin (the same or distantly related LRV1 strains, or even LRV2), while LRV2 was only partially depleted in the case of the native capsid overexpression. The striking differences were also observed in the effects of complete viral elimination with 2'C-methyladenosine (2-CMA) on the transcriptional profiles of these two Leishmania spp. While virtually no differentially expressed genes were detected after the LRV1 removal from L. guyanensis, the response of L. major after ablation of LRV2 involved 87 genes, the analysis of which suggested a considerable stress experienced even after several passages following the treatment. This effect on L. major was also reflected in a significant decrease of the proliferation rate, not documented in L. guyanensis and naturally virus-free strain of L. major. Our findings suggest that integration of L. major with LRV2 is deeper compared with that of L. guyanensis with LRV1. We presume this determines different effects of the viral presence on the Leishmania spp. infections. IMPORTANCE Leishmania spp. represent human pathogens that cause leishmaniasis, a widespread parasitic disease with mild to fatal clinical manifestations. Some strains of leishmaniae bear leishmaniaviruses (LRVs), and this has been shown to aggravate disease course. We investigated the relationships of two distally related Leishmania spp. with their respective LRVs using different strategies of virus removal. Our results suggest the South American L. guyanensis easily loses its virus with no important consequences for the parasite in the laboratory culture. Conversely, the Old-World L. major is refractory to virus removal and experiences a prominent stress if this removal is nonetheless completed. The drastically different levels of integration between the studied Leishmania spp. and their viruses suggest distinct effects of the viral presence on infections in these species of parasites.
- Keywords
- LRV1, LRV2, Leishmania guyanensis, Leishmania major, capsid,
- MeSH
- Leishmania * genetics MeSH
- Leishmaniavirus * genetics MeSH
- Leishmaniasis * parasitology MeSH
- Humans MeSH
- Capsid Proteins MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Intramural MeSH
- Names of Substances
- Capsid Proteins MeSH
Leishmaniasis is a parasitic vector-borne disease caused by the protistan flagellates of the genus Leishmania. Leishmania (Viannia) guyanensis is one of the most common causative agents of the American tegumentary leishmaniasis. It has previously been shown that L. guyanensis strains that carry the endosymbiotic Leishmania RNA virus 1 (LRV1) cause more severe form of the disease in a mouse model than those that do not. The presence of the virus was implicated into the parasite's replication and spreading. In this respect, studying the molecular mechanisms of cellular control of viral infection is of great medical importance. Here, we report ~30.5 Mb high-quality genome assembly of the LRV1-positive L. guyanensis M4147. This strain was turned into a model by establishing the CRISPR-Cas9 system and ablating the gene encoding phosphatidate phosphatase 2-like (PAP2L) protein. The orthologue of this gene is conspicuously absent from the genome of an unusual member of the family Trypanosomatidae, Vickermania ingenoplastis, a species with mostly bi-flagellated cells. Our analysis of the PAP2L-null L. guyanensis showed an increase in the number of cells strikingly resembling the bi-flagellated V. ingenoplastis, likely as a result of the disruption of the cell cycle, significant accumulation of phosphatidic acid, and increased virulence compared to the wild type cells.
- MeSH
- Cell Cycle MeSH
- Phosphatidate Phosphatase genetics MeSH
- Leishmania guyanensis * MeSH
- Leishmaniavirus MeSH
- Leishmaniasis, Cutaneous * MeSH
- Lipids MeSH
- Mice MeSH
- Parasites * MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Phosphatidate Phosphatase MeSH
- Lipids MeSH
BACKGROUND: Telomeres are indispensable for genome stability maintenance. They are maintained by the telomere-associated protein complex, which include Ku proteins and a telomerase among others. Here, we investigated a role of Ku80 in Leishmania mexicana. Leishmania is a genus of parasitic protists of the family Trypanosomatidae causing a vector-born disease called leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS: We used the previously established CRISPR/Cas9 system to mediate ablation of Ku80- and Ku70-encoding genes in L. mexicana. Complete knock-outs of both genes were confirmed by Southern blotting, whole-genome Illumina sequencing, and RT-qPCR. Resulting telomeric phenotypes were subsequently investigated using Southern blotting detection of terminal restriction fragments. The genome integrity in the Ku80- deficient cells was further investigated by whole-genome sequencing. Our work revealed that telomeres in the ΔKu80 L. mexicana are elongated compared to those of the wild type. This is a surprising finding considering that in another model trypanosomatid, Trypanosoma brucei, they are shortened upon ablation of the same gene. A telomere elongation phenotype has been documented in other species and associated with a presence of telomerase-independent alternative telomere lengthening pathway. Our results also showed that Ku80 appears to be not involved in genome stability maintenance in L. mexicana. CONCLUSION/SIGNIFICANCE: Ablation of the Ku proteins in L. mexicana triggers telomere elongation, but does not have an adverse impact on genome integrity.
- MeSH
- Ku Autoantigen genetics metabolism MeSH
- Genome, Protozoan MeSH
- Leishmania mexicana genetics metabolism MeSH
- Leishmaniasis, Cutaneous parasitology MeSH
- Humans MeSH
- Genomic Instability * MeSH
- Protozoan Proteins genetics metabolism MeSH
- Telomere genetics metabolism MeSH
- Trypanosoma brucei brucei genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ku Autoantigen MeSH
- Protozoan Proteins MeSH
Catalase is one of the most abundant enzymes on Earth. It decomposes hydrogen peroxide, thus protecting cells from dangerous reactive oxygen species. The catalase-encoding gene is conspicuously absent from the genome of most representatives of the family Trypanosomatidae. Here, we expressed this protein from the Leishmania mexicana Β-TUBULIN locus using a novel bicistronic expression system, which relies on the 2A peptide of Teschovirus A. We demonstrated that catalase-expressing parasites are severely compromised in their ability to develop in insects, to be transmitted and to infect mice, and to cause clinical manifestation in their mammalian host. Taken together, our data support the hypothesis that the presence of catalase is not compatible with the dixenous life cycle of Leishmania, resulting in loss of this gene from the genome during the evolution of these parasites.
- Keywords
- Leishmania, catalase, dixeny, evolution, virulence,
- MeSH
- Virulence Factors genetics metabolism MeSH
- Catalase genetics metabolism MeSH
- Cells, Cultured MeSH
- Leishmania mexicana genetics growth & development pathogenicity MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Protozoan Proteins genetics MeSH
- Psychodidae parasitology MeSH
- Life Cycle Stages genetics MeSH
- Teschovirus genetics MeSH
- Virulence MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Virulence Factors MeSH
- Catalase MeSH
- Protozoan Proteins MeSH
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
- Keywords
- genomics, next-generation sequencing, trypanosomatids,
- Publication type
- Journal Article MeSH
- Review MeSH
The closest relative of human pathogen Leishmania, the trypanosomatid Novymonas esmeraldas, harbors a bacterial endosymbiont "Candidatus Pandoraea novymonadis." Based on genomic data, we performed a detailed characterization of the metabolic interactions of both partners. While in many respects the metabolism of N. esmeraldas resembles that of other Leishmaniinae, the endosymbiont provides the trypanosomatid with heme, essential amino acids, purines, some coenzymes, and vitamins. In return, N. esmeraldas shares with the bacterium several nonessential amino acids and phospholipids. Moreover, it complements its carbohydrate metabolism and urea cycle with enzymes missing from the "Ca. Pandoraea novymonadis" genome. The removal of the endosymbiont from N. esmeraldas results in a significant reduction of the overall translation rate, reduced expression of genes involved in lipid metabolism and mitochondrial respiratory activity, and downregulation of several aminoacyl-tRNA synthetases, enzymes involved in the synthesis of some amino acids, as well as proteins associated with autophagy. At the same time, the genes responsible for protection against reactive oxygen species and DNA repair become significantly upregulated in the aposymbiotic strain of this trypanosomatid. By knocking out a component of its flagellum, we turned N. esmeraldas into a new model trypanosomatid that is amenable to genetic manipulation using both conventional and CRISPR-Cas9-mediated approaches. IMPORTANCENovymonas esmeraldas is a parasitic flagellate of the family Trypanosomatidae representing the closest insect-restricted relative of the human pathogen Leishmania. It bears symbiotic bacteria in its cytoplasm, the relationship with which has been established relatively recently and independently from other known endosymbioses in protists. Here, using the genome analysis and comparison of transcriptomic profiles of N. esmeraldas with and without the endosymbionts, we describe a uniquely complex cooperation between both partners on the biochemical level. We demonstrate that the removal of bacteria leads to a decelerated growth of N. esmeraldas, substantial suppression of many metabolic pathways, and increased oxidative stress. Our success with the genetic transformation of this flagellate makes it a new model trypanosomatid species that can be used for the dissection of mechanisms underlying the symbiotic relationships between protists and bacteria.
- Keywords
- Leishmaniinae, Trypanosomatidae, bacterial endosymbiont, genomics, metabolism,
- MeSH
- Bacteria classification genetics metabolism MeSH
- Phylogeny MeSH
- Genome, Bacterial * MeSH
- Genomics MeSH
- Symbiosis genetics MeSH
- Trypanosoma classification metabolism microbiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In this work, we describe the first Leishmania-infecting leishbunyavirus-the first virus other than Leishmania RNA virus (LRV) found in trypanosomatid parasites. Its host is Leishmaniamartiniquensis, a human pathogen causing infections with a wide range of manifestations from asymptomatic to severe visceral disease. This virus (LmarLBV1) possesses many characteristic features of leishbunyaviruses, such as tripartite organization of its RNA genome, with ORFs encoding RNA-dependent RNA polymerase, surface glycoprotein, and nucleoprotein on L, M, and S segments, respectively. Our phylogenetic analyses suggest that LmarLBV1 originated from leishbunyaviruses of monoxenous trypanosomatids and, probably, is a result of genomic re-assortment. The LmarLBV1 facilitates parasites' infectivity in vitro in primary murine macrophages model. The discovery of a virus in L.martiniquensis poses the question of whether it influences pathogenicity of this parasite in vivo, similarly to the LRV in other Leishmania species.
- Keywords
- Bunyavirales, Leishmania martiniquensis, leishbunyavirus,
- MeSH
- Phylogeny * MeSH
- Genome, Viral * MeSH
- Leishmania pathogenicity virology MeSH
- Macrophages parasitology MeSH
- Mice MeSH
- Open Reading Frames MeSH
- Reassortant Viruses MeSH
- RNA-Dependent RNA Polymerase MeSH
- RNA Viruses classification genetics MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA-Dependent RNA Polymerase MeSH
Protein phosphorylation/dephosphorylation is an important regulatory mechanism that controls many key physiological processes. Numerous pathogens successfully use kinases and phosphatases to internalize, replicate, and survive, modifying the host's phosphorylation profile or signal transduction pathways. Multiple phosphatases and kinases from diverse bacterial pathogens have been implicated in human infections before. In this work, we have identified and characterized the dual specificity protein/lipid phosphatase LmDUSP1 as a novel virulence factor governing Leishmania mexicana infection. The LmDUSP1-encoding gene (LmxM.22.0250 in L. mexicana) has been acquired from bacteria via horizontal gene transfer. Importantly, its orthologues have been associated with virulence in several bacterial species, such as Mycobacterium tuberculosis and Listeria monocytogenes. Leishmania mexicana with ablated LmxM.22.0250 demonstrated severely attenuated virulence in the experimental infection of primary mouse macrophages, suggesting that this gene facilitates Leishmania pathogenicity in vertebrates. Despite significant upregulation of LmxM.22.0250 expression in metacyclic promastigotes, its ablation did not affect the ability of mutant cells to differentiate into virulent stages in insects. It remains to be further investigated which specific biochemical pathways involve LmDUSP1 and how this facilitates the parasite's survival in the host. One of the interesting possibilities is that LmDUSP1 may target host's substrate(s), thereby affecting its signal transduction pathways.
- Keywords
- Leishmania infection, LmDUSP1, virulence factor,
- Publication type
- Journal Article MeSH