The classic plant growth-promoting phytohormone cytokinin has been identified and established as a mediator of pathogen resistance in different plant species. However, the resistance effect of structurally different cytokinins appears to vary and may regulate diverse mechanisms to establish resistance. Hence, we comparatively analysed the impact of six different adenine- and phenylurea-type cytokinins on the well-established pathosystem Nicotiana tabacum-Pseudomonas syringae. The efficiency of resistance effects was evaluated based on impacts on the host plant defence response by scoring infection symptoms and the direct impact on the pathogen by assessment of proliferation in planta. To identify common and cytokinin-specific components involved in resistance effects, transcriptome profiling and targeted metabolomics were conducted in leaves treated with the different cytokinins. We observed clearly different potentials of the tested cytokinins in either suppressing infection symptoms or pathogen proliferation. Gene regulation and metabolite analyses revealed cytokinin-type specific impacts on defence components, such as salicylic acid and related signalling, expression of PR proteins, and regulation of specialised metabolism. Cytokinins also strongly affected plant cell physiological parameters, such as a remarkable decrease in amino acid pools. Hence, this study provides comparative information on the efficiency of diverse cytokinins in mediating resistance in one well-studied pathosystem and insights into the specific regulation of resistance effects mediated by different cytokinin molecules. This is particularly relevant for studies on the function of cytokinins or other phytohormones and compounds interacting with cytokinin activities in the context of pathogen infections and other stress scenarios, considering the diverse cytokinins present in plants.
- MeSH
- cytokininy * metabolismus MeSH
- listy rostlin mikrobiologie metabolismus genetika MeSH
- nemoci rostlin * mikrobiologie imunologie genetika MeSH
- odolnost vůči nemocem * genetika MeSH
- Pseudomonas syringae * fyziologie patogenita MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- regulátory růstu rostlin metabolismus MeSH
- tabák * mikrobiologie genetika imunologie účinky léků metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokininy * MeSH
- regulátory růstu rostlin MeSH
Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv. tabaci (PsT) infection. Since Chlamydomonas reinhardtii (Cre) proved to be the most efficient, we functionally characterized its biocontrol ability. We employed the CRISPR-Cas9 system to generate the first knockouts of CK biosynthetic genes in microalgae. Specifically, we targeted Cre Lonely Guy (LOG) and isopentenyltransferase (IPT) genes, the key genes of CK biosynthesis. While Cre wild-type exhibits a strong protection, the CK-deficient mutants have a reduced ability to induce plant defence. The degree of protection correlates with the CK levels, with the IPT mutants showing less protection than the LOG mutants. Gene expression analyses showed that Cre strongly stimulates tobacco resistance through defence gene priming. This study functionally verifies that Cre primes defence responses with CK, which contributes to the robustness of the effect. This work contributes to elucidate microalgae-mediated plant defence priming and identifies the role of CKs. In addition, these results underscore the potential of CK-producing microalgae as biologicals in agriculture by combining biofertilizer and biocontrol ability for sustainable and environment-friendly crop management.
- MeSH
- Chlamydomonas reinhardtii * genetika metabolismus MeSH
- CRISPR-Cas systémy * MeSH
- cytokininy * metabolismus MeSH
- mutace MeSH
- nemoci rostlin * mikrobiologie imunologie genetika MeSH
- odolnost vůči nemocem * genetika MeSH
- Pseudomonas syringae patogenita fyziologie MeSH
- tabák * genetika mikrobiologie imunologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokininy * MeSH
Belowground interactions of plants with other organisms in the rhizosphere rely on extensive small-molecule communication. Chemical signals released from host plant roots ensure the development of beneficial arbuscular mycorrhizal (AM) fungi which in turn modulate host plant growth and stress tolerance. However, parasitic plants have adopted the capacity to sense the same signaling molecules and to trigger their own seed germination in the immediate vicinity of host roots. The contribution of AM fungi and parasitic plants to the regulation of phytohormone levels in host plant roots and root exudates remains largely obscure. Here, we studied the hormonome in the model system comprising tobacco as a host plant, Phelipanche spp. as a holoparasitic plant, and the AM fungus Rhizophagus irregularis. Co-cultivation of tobacco with broomrape and AM fungi alone or in combination led to characteristic changes in the levels of endogenous and exuded abscisic acid, indole-3-acetic acid, cytokinins, salicylic acid, and orobanchol-type strigolactones. The hormonal content in exudates of broomrape-infested mycorrhizal roots resembled that in exudates of infested non-mycorrhizal roots and differed from that observed in exudates of non-infested mycorrhizal roots. Moreover, we observed a significant reduction in AM colonization of infested tobacco plants, pointing to a dominant role of the holoparasite within the tripartite system.
- Klíčová slova
- mycorrhizal fungi, parasitic plants, plant hormones, rhizosphere, root exudates, small-molecule communication, strigolactones,
- MeSH
- chromatografie kapalinová MeSH
- cytokininy metabolismus MeSH
- heterocyklické sloučeniny tricyklické metabolismus MeSH
- hmotnostní spektrometrie MeSH
- houby fyziologie MeSH
- interakce hostitele a patogenu MeSH
- kořeny rostlin metabolismus mikrobiologie MeSH
- kyselina abscisová metabolismus MeSH
- kyselina salicylová metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- laktony metabolismus MeSH
- mykorhiza fyziologie MeSH
- Orobanche růst a vývoj mikrobiologie MeSH
- tabák růst a vývoj mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokininy MeSH
- GR24 strigolactone MeSH Prohlížeč
- heterocyklické sloučeniny tricyklické MeSH
- indoleacetic acid MeSH Prohlížeč
- kyselina abscisová MeSH
- kyselina salicylová MeSH
- kyseliny indoloctové MeSH
- laktony MeSH
Plant plasma membrane associated proteins play significant roles in Microbe-Associated Molecular Pattern (MAMP) mediated defence responses including signal transduction, membrane transport or energetic metabolism. To elucidate the dynamics of proteins associated with plasma membrane in response to cryptogein, a well-known MAMP of defence reaction secreted by the oomycete Phytophthora cryptogea, 2D-Blue Native/SDS gel electrophoresis of plasma membrane fractions was employed. This approach revealed 21 up- or down-regulated protein spots of which 15 were successfully identified as proteins related to transport through plasma membrane, vesicle trafficking, and metabolic enzymes including cytosolic NADP-malic enzyme and glutamine synthetase. Observed changes in proteins were also confirmed on transcriptional level by qRT-PCR analysis. In addition, a significantly decreased accumulation of transcripts observed after employment of a mutant variant of cryptogein Leu41Phe, exhibiting a conspicuous defect in induction of resistance, sustains the contribution of identified proteins in cryptogein-triggered cellular responses. Our data provide further evidence for dynamic MAMP-induced changes in plasma membrane associated proteins.
- Klíčová slova
- ATPase, Cryptogein, Glutamine synthetase, NADP-malic enzyme, Rab8, Resistance,
- MeSH
- buněčná membrána metabolismus MeSH
- chromatografie kapalinová MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- fungální proteiny genetika metabolismus MeSH
- membránové proteiny genetika metabolismus MeSH
- PAMP struktury metabolismus MeSH
- Phytophthora fyziologie MeSH
- rostlinné proteiny genetika metabolismus MeSH
- tabák genetika metabolismus mikrobiologie MeSH
- tandemová hmotnostní spektrometrie MeSH
- trypsin chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fungální proteiny MeSH
- membránové proteiny MeSH
- PAMP struktury MeSH
- rostlinné proteiny MeSH
- trypsin MeSH
Cryptogein, a protein from oomycete Phytophthora cryptogea, induces a hypersensitive cell death in Nicotiana tabacum. We prepared a new series of cryptogein mutant proteins with altered abilities to bind sterols and with altered charge distribution in the proteins. The effect of the mutations on the cryptogein ability to induce plant defence mechanisms associated with hypersensitive cell death were examined. Our results with new mutants support the previous findings that the sterol binding does not influence synthesis of ROS, cytosol acidification and development of leaf necrosis as these events seem to be more likely affected by the charge distribution and the overall protein structure. This hypothesis was also applicable on other mechanisms involved in the execution of plant cell death such as the NO generation, the stimulation of lipid peroxidation (determination of malondialdehyde and hydroxy fatty acids levels) and LOX gene transcription. In addition, the ability to bind sterols was found to serve not only for pathogen utilisation in its own metabolism but also to have an important function for the destabilization of plant membrane facilitating the pathogen spread inside the plant tissue as well as intensively contributing to the development of plant cell death. Considering the insertion of charged amino acid residues in the protein structure, the change localized in the protein surface affected its biological activity more effectively than that change inside the protein cavity. Moreover, the insertion of negative charged amino acids influenced mainly the events involved in the early phase of defence reaction, while the positive residues affected especially the necrotic activity of cryptogein.
- Klíčová slova
- Cryptogein, Hydroxy fatty acids analysis, Hypersensitive response, Lipid peroxidation, Mutant proteins, Nicotiana tabaccum,
- MeSH
- buněčná membrána metabolismus MeSH
- buněčná smrt MeSH
- extracelulární prostor MeSH
- fungální proteiny metabolismus MeSH
- genetická transkripce MeSH
- koncentrace vodíkových iontů MeSH
- listy rostlin genetika metabolismus mikrobiologie MeSH
- mastné kyseliny metabolismus MeSH
- nemoci rostlin mikrobiologie MeSH
- oxid dusnatý metabolismus MeSH
- peroxidace lipidů MeSH
- Phytophthora patogenita fyziologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- steroly metabolismus MeSH
- tabák genetika metabolismus mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cryptogein protein, Phytophthora cryptogea MeSH Prohlížeč
- fungální proteiny MeSH
- mastné kyseliny MeSH
- oxid dusnatý MeSH
- reaktivní formy kyslíku MeSH
- rostlinné proteiny MeSH
- steroly MeSH
Few cases of spontaneously horizontally transferred bacterial genes into plant genomes have been described to date. The occurrence of horizontally transferred genes from the T-DNA of Agrobacterium rhizogenes into the plant genome has been reported in the genus Nicotiana and in the species Linaria vulgaris. Here we compare patterns of evolution in one of these genes (a gene encoding mikimopine synthase, mis) following three different events of horizontal gene transfer (HGT). As this gene plays an important role in Agrobacterium, and there are known cases showing that genes from pathogens can acquire plant protection function, we hypothesised that in at least some of the studied species we will find signs of selective pressures influencing mis sequence. The mikimopine synthase (mis) gene evolved in a different manner in the branch leading to Nicotiana tabacum and N. tomentosiformis, in the branch leading to N. glauca and in the genus Linaria. Our analyses of the genus Linaria suggest that the mis gene began to degenerate soon after the HGT. In contrast, in the case of N. glauca, the mis gene evolved under significant selective pressures. This suggests a possible role of mikimopine synthase in current N. glauca and its ancestor(s). In N. tabacum and N. tomentosiformis, the mis gene has a common frameshift mutation that disrupted its open reading frame. Interestingly, our results suggest that in spite of the frameshift, the mis gene could evolve under selective pressures. This sequence may still have some regulatory role at the RNA level as suggested by coverage of this sequence by small RNAs in N. tabacum.
- MeSH
- Agrobacterium enzymologie genetika MeSH
- bakteriální proteiny klasifikace genetika metabolismus MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- imidazoly metabolismus MeSH
- interakce hostitele a patogenu genetika MeSH
- Linaria genetika mikrobiologie MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- oxidoreduktasy působící na CH-NH vazby klasifikace genetika metabolismus MeSH
- posunová mutace MeSH
- přenos genů horizontální * MeSH
- pyridiny metabolismus MeSH
- regulace genové exprese enzymů MeSH
- sekvence nukleotidů MeSH
- selekce (genetika) MeSH
- tabák klasifikace genetika mikrobiologie MeSH
- transformace genetická MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- cucumopine MeSH Prohlížeč
- imidazoly MeSH
- opine dehydrogenase, NAD+ MeSH Prohlížeč
- oxidoreduktasy působící na CH-NH vazby MeSH
- pyridiny MeSH
Plant NADPH oxidases, also known as respiratory burst oxidase homologues (RBOHs), have been identified as a major source of reactive oxygen species (ROS) during plant-microbe interactions. The subcellular localization of the tobacco (Nicotiana tabacum) ROS-producing enzyme RBOHD was examined in Bright Yellow-2 cells before and after elicitation with the oomycete protein cryptogein using electron and confocal microscopy. The plasma membrane (PM) localization of RBOHD was confirmed and immuno-electron microscopy on purified PM vesicles revealed its distribution in clusters. The presence of the protein fused to GFP was also seen in intracellular compartments, mainly Golgi cisternae. Cryptogein induced, within 1h, a 1.5-fold increase in RBOHD abundance at the PM and a concomitant decrease in the internal compartments. Use of cycloheximide revealed that most of the proteins targeted to the PM upon elicitation were not newly synthesized but may originate from the Golgi pool. ROS accumulation preceded RBOHD transcript- and protein-upregulation, indicating that ROS resulted from the activation of a PM-resident pool of enzymes, and that enzymes newly addressed to the PM were inactive. Taken together, the results indicate that control of RBOH abundance and subcellular localization may play a fundamental role in the mechanism of ROS production.
- Klíčová slova
- BY-2 cells, Nicotiana tabacum, cryptogein, protein trafficking, protein trafficking., reactive oxygen species, respiratory burst oxidase homolog D (RBOHD),
- MeSH
- buněčná membrána metabolismus MeSH
- fungální proteiny metabolismus MeSH
- konfokální mikroskopie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- NADPH-oxidasy genetika metabolismus MeSH
- Phytophthora fyziologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- tabák genetika metabolismus mikrobiologie MeSH
- transmisní elektronová mikroskopie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fungální proteiny MeSH
- NADPH-oxidasy MeSH
- reaktivní formy kyslíku MeSH
- rostlinné proteiny MeSH
Ergosterol, a principal compound of the fungal plasma membrane, is regarded as a pathogen-associated molecular pattern. In the present study, the role of salicylic acid (SA), jasmonic acid (JA) and spermine signaling pathways after ergosterol elicitation were evaluated. SA, JA and spermine production, as well as accumulation of transcripts for a lipoxygenase (NaLOX3) gene, the phenylalanine-ammonia lyase gene, selected pathogenesis-related genes (PR1, PR5), and peroxidase tPOXC1 were determined in tobacco (Nicotiana tabacum L. cv. Xanthi) in response to ergosterol elicitation. To understand the sequence of the signaling cascade, several representative steps involved in the synthesis of crucial signaling molecules were targeted using specific inhibitors. SA signaling pathway, together with calmodulin-dependent protein kinases and nitric oxide, was demonstrated to play an important role in the induction of defense-related genes following ergosterol treatment. The results suggested that nitric oxide participates in defense-related gene activation following ergosterol treatment but does not directly participate in activation of reactive oxygen species production. The induction of PR5 and tPOXC1 transcripts was found to be not fully dependent on calmodulin/Ca2+ and SA signaling, contrary to the PR1a transcript. A possible candidate for this SA-independent pathway is the spermine pathway, as elevated spermine levels were detected following ergosterol treatment.
- Klíčová slova
- 2-(4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide, 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate, Chole, DAF-FM DA, Defense, Ergo, Ergosterol, JA, Jasmonic acid, N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide, N-methyl-l-arginine acetate salt, NO, NOS, PAL, PLA2, PR, ROS, RR, RT-qPCR, SA, Salicylic acid, Signaling, Spermine, Tobacco, W7, cPTIO, cholesterol, ergosterol, jasmonic acid, l-NMMA, nitric oxide, nitric oxide synthase, pathogenesis-related, phenylalanine-ammonia lyase, phospholipase A(2), reactive oxygen species, real-time quantitative polymerase chain reaction, ruthenium red, salicylic acid, tPOXC1, tobacco peroxidase C1,
- MeSH
- cyklopentany metabolismus MeSH
- ergosterol metabolismus MeSH
- exprese genu MeSH
- houby metabolismus MeSH
- kalmodulin metabolismus MeSH
- kyselina salicylová metabolismus MeSH
- nemoci rostlin mikrobiologie MeSH
- odolnost vůči nemocem genetika MeSH
- oxid dusnatý metabolismus MeSH
- oxylipiny metabolismus MeSH
- proteinkinasy závislé na vápníku a kalmodulinu metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné geny MeSH
- rostlinné proteiny genetika metabolismus MeSH
- signální transdukce MeSH
- spermin metabolismus MeSH
- tabák enzymologie genetika metabolismus mikrobiologie MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklopentany MeSH
- ergosterol MeSH
- jasmonic acid MeSH Prohlížeč
- kalmodulin MeSH
- kyselina salicylová MeSH
- oxid dusnatý MeSH
- oxylipiny MeSH
- proteinkinasy závislé na vápníku a kalmodulinu MeSH
- reaktivní formy kyslíku MeSH
- rostlinné proteiny MeSH
- spermin MeSH
- vápník MeSH
BACKGROUND AND AIMS: Cytokinins are positive regulators of shoot development. However, it has previously been demonstrated that efficient activation of the cytokinin biosynthesis gene ipt can cause necrotic lesions and wilting in tobacco leaves. Some plant pathogens reportedly use their ability to produce cytokinins in disease development. In response to pathogen attacks, plants can trigger a hypersensitive response that rapidly kills cells near the infection site, depriving the pathogen of nutrients and preventing its spread. In this study, a diverse set of processes that link ipt activation to necrotic lesion formation were investigated in order to evaluate the potential of cytokinins as signals and/or mediators in plant defence against pathogens. METHODS: The binary pOp-ipt/LhGR system for dexamethasone-inducible ipt expression was used to increase endogenous cytokinin levels in transgenic tobacco. Changes in the levels of cytokinins and the stress hormones salicylic, jasmonic and abscisic acid following ipt activation were determined by ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC-MS/MS). Trends in hydrogen peroxide content and lipid peroxidation were monitored using the potassium iodide and malondialdehyde assays. The subcellular distribution of hydrogen peroxide was investigated using 3,3'-diaminobenzidine staining. The dynamics of transcripts related to photosynthesis and pathogen response were analysed by reverse transcription followed by quantitative PCR. The effects of cytokinins on photosynthesis were deciphered by analysing changes in chlorophyll fluorescence and leaf gas exchange. KEY RESULTS: Plants can produce sufficiently high levels of cytokinins to trigger fast cell death without any intervening chlorosis - a hallmark of the hypersensitive response. The results suggest that chloroplastic hydrogen peroxide orchestrates the molecular responses underpinning the hypersensitive-like response, including the inhibition of photosynthesis, elevated levels of stress hormones, oxidative membrane damage and stomatal closure. CONCLUSIONS: Necrotic lesion formation triggered by ipt activation closely resembles the hypersensitive response. Cytokinins may thus act as signals and/or mediators in plant defence against pathogen attack.
- Klíčová slova
- Cytokinin, Nicotiana tabacum, abscisic acid, hydrogen peroxide, hypersensitive response, jasmonic acid, lipid peroxidation, non-photochemical quenching, pathogenesis-related proteins, photosynthesis, salicylic acid, stomatal conductance,
- MeSH
- alkyltransferasy a aryltransferasy genetika MeSH
- buněčná smrt MeSH
- chlorofyl metabolismus MeSH
- chloroplasty genetika metabolismus MeSH
- cytokininy genetika metabolismus MeSH
- dexamethason farmakologie MeSH
- fotosyntéza genetika MeSH
- geneticky modifikované rostliny MeSH
- interakce hostitele a patogenu * MeSH
- listy rostlin cytologie genetika fyziologie MeSH
- nekróza genetika MeSH
- oxidační stres genetika MeSH
- peroxid vodíku metabolismus MeSH
- peroxidace lipidů MeSH
- průduchy rostlin fyziologie MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- regulátory růstu rostlin genetika metabolismus MeSH
- tabák genetika mikrobiologie fyziologie MeSH
- umlčování genů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenylate isopentenyltransferase MeSH Prohlížeč
- alkyltransferasy a aryltransferasy MeSH
- chlorofyl MeSH
- cytokininy MeSH
- dexamethason MeSH
- peroxid vodíku MeSH
- regulátory růstu rostlin MeSH
Plants protect themselves from pathogen invasion through the local expression of a variety of pathogenesis-related proteins. They are highly diverse in both primary structure and length, and exhibit different direct antimicrobial activity. This text reviews the knowledge of osmotin, antimicrobial protein involved in innate immunity of plants. Osmotin belongs to the fifth class of the group of pathogenesis-related (PR) proteins and has been found in different plants species, in every case osmotin is cysteine-rich protein involved in plant defense responses to several pathogens and abiotic stresses. The phylogenetic tree of amino acids compositions of osmotins from different plant species is presented and the basic similarities of clusters are discussed in this review. Osmotin gene is activated by different biotic as well as abiotic signals and has many functions. The review summarizes biochemical and structural properties, induction, functions and structural homology between osmotin and other proteins. Recent data about recombinant production in bacterial and plant cells are examined. The article indicates possible ways of osmotin application in research in the field of functional biology, medicine and agriculture.
- MeSH
- antifungální látky chemie imunologie farmakologie MeSH
- fylogeneze MeSH
- fyziologický stres MeSH
- geneticky modifikované rostliny MeSH
- houby účinky léků MeSH
- molekulární modely MeSH
- nemoci rostlin imunologie MeSH
- regulace genové exprese u rostlin * MeSH
- rekombinantní proteiny genetika imunologie farmakologie MeSH
- rostlinné proteiny genetika imunologie farmakologie MeSH
- salinita MeSH
- sekundární struktura proteinů MeSH
- tabák genetika imunologie mikrobiologie MeSH
- terciární struktura proteinů MeSH
- vodní a elektrolytová rovnováha MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antifungální látky MeSH
- osmotin protein, Nicotiana tabacum MeSH Prohlížeč
- rekombinantní proteiny MeSH
- rostlinné proteiny MeSH