Structural variants Dotaz Zobrazit nápovědu
Understanding the genetic basis of reproductive isolation is a central issue in the study of speciation. Structural variants (SVs); that is, structural changes in DNA, including inversions, translocations, insertions, deletions, and duplications, are common in a broad range of organisms and have been hypothesized to play a central role in speciation. Recent advances in molecular and statistical methods have identified structural variants, especially inversions, underlying ecologically important traits; thus, suggesting these mutations contribute to adaptation. However, the contribution of structural variants to reproductive isolation between species-and the underlying mechanism by which structural variants most often contribute to speciation-remain unclear. Here, we review (i) different mechanisms by which structural variants can generate or maintain reproductive isolation; (ii) patterns expected with these different mechanisms; and (iii) relevant empirical examples of each. We also summarize the available sequencing and bioinformatic methods to detect structural variants. Lastly, we suggest empirical approaches and new research directions to help obtain a more complete assessment of the role of structural variants in speciation.
- Klíčová slova
- hybridization, reproductive isolation, suppressed recombination,
- MeSH
- biologická evoluce MeSH
- druhová specificita * MeSH
- fenotyp MeSH
- fyziologická adaptace MeSH
- lidé MeSH
- molekulární evoluce MeSH
- reprodukční izolace MeSH
- strukturální variace genomu genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
BACKGROUND: Structural variants (SVs) represent an important source of genetic variation. One of the most critical problems in their detection is breakpoint uncertainty associated with the inability to determine their exact genomic position. Breakpoint uncertainty is a characteristic issue of structural variants detected via short-read sequencing methods and complicates subsequent population analyses. The commonly used heuristic strategy reduces this issue by clustering/merging nearby structural variants of the same type before the data from individual samples are merged. RESULTS: We compared the two most used dissimilarity measures for SV clustering in terms of Mendelian inheritance errors (MIE), kinship prediction, and deviation from Hardy-Weinberg equilibrium. We analyzed the occurrence of Mendelian-inconsistent SV clusters that can be collapsed into one Mendelian-consistent SV as a new measure of dataset consistency. We also developed a new method based on constrained clustering that explicitly identifies these types of clusters. CONCLUSIONS: We found that the dissimilarity measure based on the distance between SVs breakpoints produces slightly better results than the measure based on SVs overlap. This difference is evident in trivial and corrected clustering strategy, but not in constrained clustering strategy. However, constrained clustering strategy provided the best results in all aspects, regardless of the dissimilarity measure used.
- Klíčová slova
- Breakpoints uncertainty problem, Constrained clustering, Mendelian inheritance error, Structural variants, Whole genome sequencing,
- MeSH
- genom lidský * MeSH
- genomika MeSH
- lidé MeSH
- nejistota MeSH
- shluková analýza MeSH
- strukturální variace genomu * MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Polyploidy, the result of whole-genome duplication (WGD), is a major driver of eukaryote evolution. Yet WGDs are hugely disruptive mutations, and we still lack a clear understanding of their fitness consequences. Here, we study whether WGDs result in greater diversity of genomic structural variants (SVs) and how they influence evolutionary dynamics in a plant genus, Cochlearia (Brassicaceae). By using long-read sequencing and a graph-based pangenome, we find both negative and positive interactions between WGDs and SVs. Masking of recessive mutations due to WGDs leads to a progressive accumulation of deleterious SVs across four ploidal levels (from diploids to octoploids), likely reducing the adaptive potential of polyploid populations. However, we also discover putative benefits arising from SV accumulation, as more ploidy-specific SVs harbor signals of local adaptation in polyploids than in diploids. Together, our results suggest that SVs play diverse and contrasting roles in the evolutionary trajectories of young polyploids.
BACKGROUND: Extensive genome rearrangements, known as chromothripsis, have been recently identified in several cancer types. Chromothripsis leads to complex structural variants (cSVs) causing aberrant gene expression and the formation of de novo fusion genes, which can trigger cancer development, or worsen its clinical course. The functional impact of cSVs can be studied at the RNA level using whole transcriptome sequencing (total RNA-Seq). It represents a powerful tool for discovering, profiling, and quantifying changes of gene expression in the overall genomic context. However, bioinformatic analysis of transcriptomic data, especially in cases with cSVs, is a complex and challenging task, and the development of proper bioinformatic tools for transcriptome studies is necessary. METHODS: We designed a bioinformatic workflow for the analysis of total RNA-Seq data consisting of two separate parts (pipelines): The first pipeline incorporates a statistical solution for differential gene expression analysis in a biologically heterogeneous sample set. We utilized results from transcriptomic arrays which were carried out in parallel to increase the precision of the analysis. The second pipeline is used for the identification of de novo fusion genes. Special attention was given to the filtering of false positives (FPs), which was achieved through consensus fusion calling with several fusion gene callers. We applied the workflow to the data obtained from ten patients with chronic lymphocytic leukemia (CLL) to describe the consequences of their cSVs in detail. The fusion genes identified by our pipeline were correlated with genomic break-points detected by genomic arrays. RESULTS: We set up a novel solution for differential gene expression analysis of individual samples and de novo fusion gene detection from total RNA-Seq data. The results of the differential gene expression analysis were concordant with results obtained by transcriptomic arrays, which demonstrates the analytical capabilities of our method. We also showed that the consensus fusion gene detection approach was able to identify true positives (TPs) efficiently. Detected coordinates of fusion gene junctions were in concordance with genomic breakpoints assessed using genomic arrays. DISCUSSION: Byapplying our methods to real clinical samples, we proved that our approach for total RNA-Seq data analysis generates results consistent with other genomic analytical techniques. The data obtained by our analyses provided clues for the study of the biological consequences of cSVs with far-reaching implications for clinical outcome and management of cancer patients. The bioinformatic workflow is also widely applicable for addressing other research questions in different contexts, for which transcriptomic data are generated.
- Klíčová slova
- Bioinformatic pipeline, Chromothripsis, Chronic lymphocytic leukemia, Complex structural variants, Fusion gene, Gene expression, Leukemia, Next-generation sequencing, Statistics, Transcriptomics,
- Publikační typ
- časopisecké články MeSH
The molecular genetics of well-characterized inherited diseases, such as phenylketonuria (PKU) and hyperphenylalaninemia (HPA) predominantly caused by mutations in the phenylalanine hydroxylase (PAH) gene, is often complicated by the identification of many novel variants, often with no obvious impact on the associated disorder. To date, more than 1100 PAH variants have been identified of which a substantial portion have unknown clinical significance. In this work, we study the functionality of seven yet uncharacterized PAH missense variants p.Asn167Tyr, p.Thr200Asn, p.Asp229Gly, p.Gly239Ala, p.Phe263Ser, p.Ala342Pro, and p.Ile406Met first identified in the Czech PKU/HPA patients. From all tested variants, three of them, namely p.Asn167Tyr, p.Thr200Asn, and p.Ile406Met, exerted residual enzymatic activity in vitro similar to wild type (WT) PAH, however, when expressed in HepG2 cells, their protein level reached a maximum of 72.1% ± 4.9%, 11.2% ± 4.2%, and 36.6% ± 7.3% compared to WT PAH, respectively. Remaining variants were null with no enzyme activity and decreased protein levels in HepG2 cells. The chaperone-like effect of applied BH4 precursor increased protein level significantly for p.Asn167Tyr, p.Asp229Gly, p.Ala342Pro, and p.Ile406Met. Taken together, our results of functional characterization in combination with in silico prediction suggest that while p.Asn167Tyr, p.Thr200Asn, and p.Ile406Met PAH variants have a mild impact on the protein, p.Asp229Gly, p.Gly239Ala, p.Phe263Ser, and p.Ala342Pro severely affect protein structure and function.
- Klíčová slova
- BH4, functional studies, missense variants, phenylalanine hydroxylase, phenylketonuria,
- MeSH
- biopteriny analogy a deriváty chemie genetika MeSH
- buňky Hep G2 MeSH
- fenylalaninhydroxylasa chemie genetika MeSH
- fenylketonurie genetika metabolismus patologie MeSH
- genotyp MeSH
- lidé MeSH
- missense mutace genetika MeSH
- počítačová simulace MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biopteriny MeSH
- fenylalaninhydroxylasa MeSH
- sapropterin MeSH Prohlížeč
Primary hyperoxaluria type I (PH1) is caused by deficient alanine:glyoxylate aminotransferase (AGT) activity. PH1-causing mutations in AGT lead to protein mistargeting and aggregation. Here, we use hydrogen-deuterium exchange (HDX) to characterize the wild-type (WT), the LM (a polymorphism frequent in PH1 patients) and the LM G170R (the most common mutation in PH1) variants of AGT. We provide the first experimental analysis of AGT structural dynamics, showing that stability is heterogeneous in the native state and providing a blueprint for frustrated regions with potentially functional relevance. The LM and LM G170R variants only show local destabilization. Enzymatic transamination of the pyridoxal 5-phosphate cofactor bound to AGT hardly affects stability. Our study, thus, supports that AGT misfolding is not caused by dramatic effects on structural dynamics.
- Klíčová slova
- disease-causing variants, functional sites, primary hyperoxaluria, protein dynamics, protein stability,
- MeSH
- lidé MeSH
- mutace MeSH
- polymorfismus genetický MeSH
- primární hyperoxalurie * genetika metabolismus MeSH
- transaminasy * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Alanine-glyoxylate transaminase MeSH Prohlížeč
- glyoxylate aminotransferase MeSH Prohlížeč
- transaminasy * MeSH
BACKGROUND: We investigated the features of the genomic rearrangements in a cohort of 50 male individuals with proteolipid protein 1 (PLP1) copy number gain events who were ascertained with Pelizaeus-Merzbacher disease (PMD; MIM: 312080). We then compared our new data to previous structural variant mutagenesis studies involving the Xq22 region of the human genome. The aggregate data from 159 sequenced join-points (discontinuous sequences in the reference genome that are joined during the rearrangement process) were studied. Analysis of these data from 150 individuals enabled the spectrum and relative distribution of the underlying genomic mutational signatures to be delineated. METHODS: Genomic rearrangements in PMD individuals with PLP1 copy number gain events were investigated by high-density customized array or clinical chromosomal microarray analysis and breakpoint junction sequence analysis. RESULTS: High-density customized array showed that the majority of cases (33/50; ~ 66%) present with single duplications, although complex genomic rearrangements (CGRs) are also frequent (17/50; ~ 34%). Breakpoint mapping to nucleotide resolution revealed further previously unknown structural and sequence complexities, even in single duplications. Meta-analysis of all studied rearrangements that occur at the PLP1 locus showed that single duplications were found in ~ 54% of individuals and that, among all CGR cases, triplication flanked by duplications is the most frequent CGR array CGH pattern observed. Importantly, in ~ 32% of join-points, there is evidence for a mutational signature of microhomeology (highly similar yet imperfect sequence matches). CONCLUSIONS: These data reveal a high frequency of CGRs at the PLP1 locus and support the assertion that replication-based mechanisms are prominent contributors to the formation of CGRs at Xq22. We propose that microhomeology can facilitate template switching, by stabilizing strand annealing of the primer using W-C base complementarity, and is a mutational signature for replicative repair.
- Klíčová slova
- BIR, Duplication, Genome instability, Genomic rearrangements, HR, LCR, MMBIR, Microhomeology, PMD, RBM,
- MeSH
- body zlomu chromozomu MeSH
- duplikace genu MeSH
- genetická predispozice k nemoci MeSH
- genetické asociační studie MeSH
- genom lidský MeSH
- genomika metody MeSH
- genová přestavba * MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- mutace * MeSH
- myelinový proteolipidový protein genetika MeSH
- nestabilita genomu MeSH
- srovnávací genomová hybridizace MeSH
- variabilita počtu kopií segmentů DNA * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- myelinový proteolipidový protein MeSH
- PLP1 protein, human MeSH Prohlížeč
Glutamate carboxypeptidase II (GCPII) and its splice variants, paralogs and human homologs represent a family of proteins with diverse tissue distribution, cellular localization and largely unknown function which have been explored only recently. While GCPII itself has been thoroughly studied from different perspectives, as clearly documented in this series of reviews, very little is known about other members of its family, even though they might be biologically relevant. Differential expression of individual GCPII splice variants is associated with tumor progression and prognosis of prostate cancer. The best studied GCPII homolog, GCPIII or NAALADase II, may be a valid pharmaceutical target for itself since it may compensate for a lack of normal GCPII enzymatic activity. Detailed molecular characterization of this family of proteins is thus very important not only with respect to the potential therapeutic use of GCPII inhibitors, but also for better understanding of the biological role of GCPII within as well as outside the nervous system.
- MeSH
- glutamátkarboxypeptidasa II analýza antagonisté a inhibitory genetika metabolismus MeSH
- inhibitory enzymů farmakologie MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- protein - isoformy analýza antagonisté a inhibitory genetika metabolismus MeSH
- regulace genové exprese MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- glutamátkarboxypeptidasa II MeSH
- inhibitory enzymů MeSH
- protein - isoformy MeSH
Predicting and quantifying phenotypic consequences of genetic variants in rare disorders is a major challenge, particularly pertinent for 'actionable' genes such as thyroid hormone transporter MCT8 (encoded by the X-linked SLC16A2 gene), where loss-of-function (LoF) variants cause a rare neurodevelopmental and (treatable) metabolic disorder in males. The combination of deep phenotyping data with functional and computational tests and with outcomes in population cohorts, enabled us to: (i) identify the genetic aetiology of divergent clinical phenotypes of MCT8 deficiency with genotype-phenotype relationships present across survival and 24 out of 32 disease features; (ii) demonstrate a mild phenocopy in ~400,000 individuals with common genetic variants in MCT8; (iii) assess therapeutic effectiveness, which did not differ among LoF-categories; (iv) advance structural insights in normal and mutated MCT8 by delineating seven critical functional domains; (v) create a pathogenicity-severity MCT8 variant classifier that accurately predicted pathogenicity (AUC:0.91) and severity (AUC:0.86) for 8151 variants. Our information-dense mapping provides a generalizable approach to advance multiple dimensions of rare genetic disorders.
- MeSH
- deep learning * MeSH
- dítě MeSH
- dospělí MeSH
- fenotyp * MeSH
- genetická variace MeSH
- genetické asociační studie MeSH
- genomika metody MeSH
- hormony štítné žlázy metabolismus genetika MeSH
- lidé MeSH
- mentální retardace vázaná na chromozom X genetika metabolismus MeSH
- mladiství MeSH
- mutace ztráty funkce MeSH
- předškolní dítě MeSH
- přenašeče monokarboxylových kyselin * genetika metabolismus MeSH
- stupeň závažnosti nemoci MeSH
- svalová atrofie genetika metabolismus patologie MeSH
- svalová hypotonie genetika metabolismus MeSH
- symportéry * genetika metabolismus MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hormony štítné žlázy MeSH
- přenašeče monokarboxylových kyselin * MeSH
- SLC16A2 protein, human MeSH Prohlížeč
- symportéry * MeSH
The effect of recombinant divercin RV41 (DvnRV41) and its structural variants on the K-channel formation was determined. The growth of Listeria monocytogenes EGDe (sensitive phenotype) and its isogenic strain (resistant phenotype) was assessed in the presence of DvnRV41 combined or not with pinacidil, NS1619, cromakalim (as K-channel activators), iberiotoxin and glipizide (as K-channel blockers). The combined action of DvnRV41 and K activators permitted formation of ATP-dependent pores. The combination of DvnRV41 and ATP-dependent pore activator cromakalim inhibited the growth of sensitive strain. The antilisterial activity of structural variants was less important than that of DvnRV41 but their mode of action remained overall similar.
- MeSH
- adenosintrifosfát metabolismus MeSH
- antibakteriální látky metabolismus MeSH
- bakteriociny genetika metabolismus MeSH
- blokátory draslíkových kanálů metabolismus MeSH
- draslíkové kanály agonisté metabolismus MeSH
- Listeria monocytogenes účinky léků genetika růst a vývoj metabolismus MeSH
- mikrobiální testy citlivosti MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- antibakteriální látky MeSH
- bakteriociny MeSH
- blokátory draslíkových kanálů MeSH
- divercin V41 MeSH Prohlížeč
- draslíkové kanály MeSH
- rekombinantní proteiny MeSH