Talaromyces
Dotaz
Zobrazit nápovědu
It is known that intracellular pathogens interact and react with the cellular immune system through exosomes produced by macrophages. This study aimed to determine whether co-culture of macrophages and Talaromyces marneffei induces exosomes and leads to immune responses. T. marneffei was incubated to collect conidia, co-cultured with human macrophages, which then induced exosomes. In cellular experiments, after extraction and purification, the exosomes were then observed by electron microscopy and detected by flow cytometry and mass spectrometry. In animal experiments, flow cytometry and enzyme-linked immunosorbent assay were used to examine whether exosomes were antigenpresenting. The results showed that purified exosomes produced a pro-inflammatory response and stimulated production of TNF-α in non-fungal-treated macrophages. Protein mass spectrometry analysis of exosomes also indicated their potential ability to activate the internal immune response system and the pro-inflammatory response. Translation and ribosomes were the most abundant GO terms in proteins, and the most relevant KEGG pathway was the biosynthesis of secondary metabolites. Furthermore, in vivo experiments revealed that exosomes induced activation of lymphocytes and increased expression of TNF-α and IL-12 in the lung, mediastinum, and spleen area. In conclusion, exosomes can be released by co-culture of T. marneffei and macrophages, having antigen-presenting functions, promoting macrophage inflammation, and initiating adaptive immune responses. These processes are inextricably linked to the translation of secondary metabolites, ribosomes and biosynthesis.
Fungal β-N-acetylhexosaminidases, though hydrolytic enzymes in vivo, are useful tools in the preparation of oligosaccharides of biological interest. The β-N-acetylhexosaminidase from Talaromyces flavus is remarkable in terms of its synthetic potential, broad substrate specificity, and tolerance to substrate modifications. It can be heterologously produced in Pichia pastoris in a high yield. The mutation of the Tyr470 residue to histidine greatly enhances its transglycosylation capability. The aim of this work was to identify the structural requirements of this model β-N-acetylhexosaminidase for its transglycosylation acceptors and formulate a structure-activity relationship study. Enzymatic reactions were performed using an activated glycosyl donor, 4-nitrophenyl N-acetyl-β-d-glucosaminide or 4-nitrophenyl N-acetyl-β-d-galactosaminide, and a panel of glycosyl acceptors of varying structural features (N-acetylglucosamine, glucose, N-acetylgalactosamine, galactose, N-acetylmuramic acid, and glucuronic acid). The transglycosylation products were isolated and structurally characterized. The C-2 N-acetamido group in the acceptor molecule was found to be essential for recognition by the enzyme. The presence of the C-2 hydroxyl moiety strongly hindered the normal course of transglycosylation, yielding unique non-reducing disaccharides in a low yield. Moreover, whereas the gluco-configuration at C-4 steered the glycosylation into the β(1-4) position, the galacto-acceptor afforded a β(1-6) glycosidic linkage. The Y470H mutant enzyme was tested with acceptors based on β-glycosides of uronic acid and N-acetylmuramic acid. With the latter acceptor, we were able to isolate and characterize one glycosylation product in a low yield. To our knowledge, this is the first example of enzymatic glycosylation of an N-acetylmuramic acid derivative. In order to explain these findings and predict enzyme behavior, a modeling study was accomplished that correlated with the acquired experimental data.
- Klíčová slova
- Glide docking, Talaromyces flavus, muramic acid, non-reducing carbohydrate, substrate specificity, transglycosylation, β-N-acetylhexosaminidases,
- MeSH
- beta-N-acetylhexosaminidasy chemie metabolismus MeSH
- glykosidy metabolismus MeSH
- glykosylace MeSH
- kinetika MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- oligosacharidy metabolismus MeSH
- substrátová specifita MeSH
- Talaromyces enzymologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-N-acetylhexosaminidasy MeSH
- glykosidy MeSH
- oligosacharidy MeSH
A filamentous fungus displaying high cellulase activity was isolated from a compost heap with triticale (a wheat-rye hybrid) as the main constituent. It was preliminarily identified as a Talaromyces pinophilus species. A 2577 base pair β-glucosidase gene was cloned from complementary DNA and heterologously expressed in Saccharomyces cerevisiae. The recombinant β-glucosidase production profile was assessed and compared to that of the Saccharomycopsis fibuligera β-glucosidase which served as a benchmark. The enzyme was also characterised in terms of pH and temperature tolerance as well as response to inhibitors. Maximal extracellular β-glucosidase activity of 0.56 nkat/mg total protein was measured using p-nitrophenyl-β-D-glucopyranoside as substrate. The recombinant protein displayed a pH optimum of 4.0, and good thermostability as 70% of maximal enzyme activity was retained after 1 h at 60 °C. Activity of the recombinant β-glucosidase was adversely affected by the presence of glucose and ethanol at higher concentrations while xylose had no effect. The expression of the T. pinophilus β-glucosidase did not reach the same titres as for the benchmark; however, in the context of constructing a yeast strain for bioethanol production in a consolidated bioprocess, the enzyme may still show good potential.
- Klíčová slova
- Acid tolerant, Bioethanol, Consolidated bioprocessing, Heterologous expression, Talaromyces pinophilus, β-glucosidase,
- MeSH
- ethanol metabolismus MeSH
- exprese genu * MeSH
- fenotyp MeSH
- fermentace MeSH
- genotyp MeSH
- glukosylceramidasa genetika metabolismus MeSH
- klonování DNA MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- Talaromyces enzymologie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ethanol MeSH
- glukosylceramidasa MeSH
- rekombinantní proteiny MeSH
An extracellular alpha-d-galactosidase from Talaromyces flavus CCF 2686 with extremely broad and unusual acceptor specificity is produced exclusively in the presence of the specific inducer--6-deoxy-D-glucose (quinovose). The procedure for the preparation of this very expensive substance has been modified and optimized. Surprisingly, any of other common alpha-D-galactosidase inducers or substrates, e.g., D-galactose, melibiose and raffinose, did not stimulate its production. The crude alpha-D-galactosidase preparation was purified by anion-exchange chromatography and three isoenzymes with different substrate specificities were identified. The main isoenzyme (alphaGal1) was further purified by cation-exchange chromatography and fully characterized. When compared with other alpha-galactosidases and also with other isoenzymes produced by T. flavus, it showed a markedly different regioselectivity and also negligible hydrolytic activity towards melibiose. Moreover, it was active on polymeric substrates (locust bean gum, guar gum) and significantly inhibited by alpha-D-galactopyranosyl azide, D-galactose, D-xylose, melibiose, methyl alpha- and beta-D-galactopyranoside and lactose.
- MeSH
- alfa-galaktosidasa biosyntéza izolace a purifikace metabolismus MeSH
- deoxyglukosa analogy a deriváty metabolismus MeSH
- enzymová indukce MeSH
- kinetika MeSH
- substrátová specifita MeSH
- Talaromyces enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 6-deoxyglucose MeSH Prohlížeč
- alfa-galaktosidasa MeSH
- deoxyglukosa MeSH
During a previous study on microfungi associated with clematis roots, Penicillium-like fungi were isolated and identified based on morphology. In this study, we subjected those strains to a detailed examination which led to the proposal of two taxonomic novelties, named Rasamsonia chlamydospora and Talaromyces clematidis. The first taxon is characterized by rough-walled mycelium, acerose to flask shaped phialides, cylindrical conidia and by production of chlamydospore-like structures. The four-loci-based phylogeny analysis delineated the taxon as a taxonomic novelty in Rasamsonia. Talaromyces clematidis is characterized by restricted growth on Czapek yeast extract agar, dichloran 18% glycerol agar and yeast extract sucrose agar, and production of yellow ascomata on oatmeal agar. Phylogenetic analyses placed this taxon as a taxonomic novelty in Talaromyces sect. Bacillispori. Both taxa are introduced here with detailed descriptions, photoplates and information on their phylogenetic relationship with related species.
- MeSH
- agar MeSH
- Eurotiales * MeSH
- fylogeneze MeSH
- Talaromyces * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- agar MeSH
The present work is aimed to hypothesize that fungal endophytes associated with wheat (Triticum aestivum L.) plants can play a variety of roles in biotechnology including plant growth. Out of 67 fungal isolates, five maximum drought-tolerant isolates were used to check their various plant growth-promoting traits, antioxidants, and antifungal activities under secondary screening. Fungal isolate #8TAKS-3a exhibited the maximum drought tolerance capacity and potential to produce auxin, gibberellic acid, ACC deaminase, phosphate, zinc solubilization, ammonia, siderophore, and extracellular enzyme activities followed by #6TAKR-1a isolate. In terms of antioxidant activities, #8TAKS-3a culture also showed maximum DPPH scavenging, total antioxidant, and NO-scavenging activities. However, #6TAKR-1a exhibited maximum total flavonoid content, total phenolic content, and Fe-reducing power and also the highest growth inhibition of Aspergillus niger (ITCC 6152) and Colletotrichum sp. (ITCC 6152). Based on morphological characters and multi-locus phylogenetic analysis of the nuc rDNA internal transcribed spacer region (ITS1-5.8S-ITS2 = ITS), β-tubulin (TUB 2), and RNA polymerase II second largest subunit (RPB2) genes, potent fungal isolate #8TAKS-3a was identified as Talaromyces purpureogenus. Under the in vitro conditions, T. purpureogenus (#8TAKS-3a) was used as a bioinoculant that displayed a significant increase in various physio-biochemical growth parameters under normal and stressed conditions (p < 0.05). Our results indicate that drought stress-tolerant T. purpureogenus can be further used for field testing as a growth promoter.
- Klíčová slova
- Bioinoculant, Drought, Endophytic fungi, Plant-growth promoter, Wheat,
- MeSH
- antioxidancia MeSH
- endofyty MeSH
- fylogeneze MeSH
- období sucha MeSH
- pšenice MeSH
- semenáček * MeSH
- Talaromyces * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
Viruses contribute significantly to the global decline of honey bee populations. One way to limit the impact of such viruses is the introduction of natural antiviral compounds from fungi as a component of honey bee diets. Therefore, we examined the effect of crude organic extracts from seven strains of the fungal genus Talaromyces in honey bee diets under laboratory conditions. The strains were isolated from bee bread prepared by honey bees infected with chronic bee paralysis virus (CBPV). The antiviral effect of the extracts was also quantified in vitro using mammalian cells as a model system. We found that three extracts (from strains B13, B18 and B30) mitigated CBPV infections and increased the survival rate of bees, whereas other extracts had no effect (B11 and B49) or were independently toxic (B69 and B195). Extract B18 inhibited the replication of feline calicivirus and feline coronavirus (FCoV) in mammalian cells, whereas extracts B18 and B195 reduced the infectivity of FCoV by ~90% and 99%, respectively. Our results show that nonpathogenic fungi (and their products in food stores) offer an underexplored source of compounds that promote disease resistance in honey bees.
- Klíčová slova
- Apis mellifera, CBPV, Talaromyces, antiviral activity, fungal extracts, mycotoxins,
- MeSH
- antivirové látky farmakologie MeSH
- Ascomycota * MeSH
- kočky MeSH
- koronavirus koček * MeSH
- paralýza MeSH
- RNA-viry * MeSH
- savci MeSH
- Talaromyces * MeSH
- včely MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antivirové látky MeSH
Honey bees coexist with fungi that colonize hive surfaces and pollen. Some of these fungi are opportunistic pathogens, but many are beneficial species that produce antimicrobial compounds for pollen conservation and the regulation of pathogen populations. In this study, we tested the in vitro antimicrobial activity of Talaromyces purpureogenus strains isolated from bee bread against Paenibacillus alvei (associated with European foulbrood disease) and three Aspergillus species that cause stonebrood disease. We found that methanol extracts of T. purpureogenus strains B18 and B195 inhibited the growth of P. alvei at a concentration of 0.39 mg/mL. Bioactivity-guided dereplication revealed that the activity of the crude extracts correlated with the presence of diketopiperazines, a siderophore, and three unknown compounds. We propose that non-pathogenic fungi such as Talaromyces spp. and their metabolites in bee bread could be an important requirement to prevent disease. Agricultural practices involving the use of fungicides can disrupt the fungal community and thus negatively affect the health of bee colonies.
- Klíčová slova
- Apis mellifera, Talaromyces, antimicrobial activity, bee bread, biocontrol, fungi, honey bee, natural product,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: β-N-Acetylhexosaminidase (GH20) from the filamentous fungus Talaromyces flavus, previously identified as a prominent enzyme in the biosynthesis of modified glycosides, lacks a high resolution three-dimensional structure so far. Despite of high sequence identity to previously reported Aspergillus oryzae and Penicilluim oxalicum β-N-acetylhexosaminidases, this enzyme tolerates significantly better substrate modification. Understanding of key structural features, prediction of effective mutants and potential substrate characteristics prior to their synthesis are of general interest. RESULTS: Computational methods including homology modeling and molecular dynamics simulations were applied to shad light on the structure-activity relationship in the enzyme. Primary sequence analysis revealed some variable regions able to influence difference in substrate affinity of hexosaminidases. Moreover, docking in combination with consequent molecular dynamics simulations of C-6 modified glycosides enabled us to identify the structural features required for accommodation and processing of these bulky substrates in the active site of hexosaminidase from T. flavus. To access the reliability of predictions on basis of the reported model, all results were confronted with available experimental data that demonstrated the principal correctness of the predictions as well as the model. CONCLUSIONS: The main variable regions in β-N-acetylhexosaminidases determining difference in modified substrate affinity are located close to the active site entrance and engage two loops. Differences in primary sequence and the spatial arrangement of these loops and their interplay with active site amino acids, reflected by interaction energies and dynamics, account for the different catalytic activity and substrate specificity of the various fungal and bacterial β-N-acetylhexosaminidases.
- MeSH
- beta-N-acetylhexosaminidasy chemie metabolismus MeSH
- fylogeneze MeSH
- glykosylace MeSH
- katalytická doména MeSH
- kinetika MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- reprodukovatelnost výsledků MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- simulace molekulární dynamiky MeSH
- substrátová specifita MeSH
- Talaromyces enzymologie MeSH
- výpočetní biologie * MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-N-acetylhexosaminidasy MeSH
The order Eurotiales is diverse and includes species that impact our daily lives in many ways. In the past, its taxonomy was difficult due to morphological similarities, which made accurate identification of species difficult. This situation improved and stabilised with recent taxonomic and nomenclatural revisions that modernised Aspergillus, Penicillium and Talaromyces. This was mainly due to the availability of curated accepted species lists and the publication of comprehensive DNA sequence reference datasets. This has also led to a sharp increase in the number of new species described each year with the accepted species lists in turn also needing regular updates. The focus of this study was to review the 160 species described between the last list of accepted species published in 2020 until 31 December 2022. To review these species, single-gene phylogenies were constructed and GCPSR (Genealogical Concordance Phylogenetic Species Recognition) was applied. Multi-gene phylogenetic analyses were performed to further determine the relationships of the newly introduced species. As a result, we accepted 133 species (37 Aspergillus, two Paecilomyces, 59 Penicillium, two Rasamsonia, 32 Talaromyces and one Xerochrysium), synonymised 22, classified four as doubtful and created a new combination for Paraxerochrysium coryli, which is classified in Xerochrysium. This brings the number of accepted species to 453 for Aspergillus, 12 for Paecilomyces, 535 for Penicillium, 14 for Rasamsonia, 203 for Talaromyces and four for Xerochrysium. We accept the newly introduced section Tenues (in Talaromyces), and series Hainanici (in Aspergillus sect. Cavernicolarum) and Vascosobrinhoana (in Penicillium sect. Citrina). In addition, we validate the invalidly described species Aspergillus annui and A. saccharicola, and series Annuorum (in Aspergillus sect. Flavi), introduce a new combination for Dichlaena lentisci (type of the genus) and place it in a new section in Aspergillus subgenus Circumdati, provide an updated description for Rasamsonia oblata, and list excluded and recently synonymised species that were previously accepted. This study represents an important update of the accepted species lists in Eurotiales. Taxonomic novelties: New sections: Aspergillus section Dichlaena Visagie, Kocsubé & Houbraken. New series: Aspergillus series Annuorum J.J. Silva, B.T. Iamanaka, Frisvad. New species: Aspergillus annui J.J. Silva, M.H.P. Fungaro, Frisvad, M.H. Taniwaki & B.T. Iamanaka; Aspergillus saccharicola J.J. Silva, Frisvad, M.H.P. Fungaro, M.H. Taniwaki & B.T. Iamanaka. New combinations: Aspergillus lentisci (Durieu & Mont.) Visagie, Malloch, L. Kriegsteiner, Samson & Houbraken; Xerochrysium coryli (Crous & Decock) Visagie & Houbraken. Citation: Visagie CM, Yilmaz N, Kocsubé S, Frisvad JC, Hubka V, Samson RA, Houbraken J (2024). A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species. Studies in Mycology 107: 1-66. doi: 10.3114/sim.2024.107.01.
- Klíčová slova
- Accepted species list, Aspergillaceae, DNA barcodes, Penicillaginaceae, Thermoascaceae, Trichocomaceae, new taxa, nomenclature, phylogenetic species concept,
- Publikační typ
- časopisecké články MeSH