• This record comes from PubMed

Whole genomic sequencing and sex-dependent abundance estimation of Cardinium sp., a common and hyperabundant bacterial endosymbiont of the American house dust mite, Dermatophagoides farinae

. 2020 Mar ; 80 (3) : 363-380. [epub] 20200218

Language English Country Netherlands Media print-electronic

Document type Journal Article

Grant support
17-12068S Grantová Agentura České Republiky
RO0418 Ministerstvo Zemědělství
19-14-00004 Russian Science Foundation

Links

PubMed 32072355
DOI 10.1007/s10493-020-00475-5
PII: 10.1007/s10493-020-00475-5
Knihovny.cz E-resources

The two common species of house dust mites (HDMs), Dermatophagoides farinae and D. pteronyssinus, are major sources of allergens in human dwellings worldwide. Many allergens from HDMs have been described, but their extracts vary in immunogens. Mite strains may differ in their microbiomes, which affect mite allergen expression and contents of bacterial endotoxins. Some bacteria, such as the intracellular symbiont Cardinium, can affect both the sex ratio and biochemical pathways of mites, resulting in abundance variations of mite allergens/immunogens. Here, we investigated the bacterial microbiomes of D. farinae and D. pteronyssinus males and females using barcode 16S rDNA sequencing, qPCR, and genomic data analysis. We found a single species of Cardinium associated with D. farinae strains from the USA, China and Europe. Cardinium had high abundance relative to other bacterial taxa and represented 99% of all bacterial DNA reads from female mites from the USA. Cardinium was also abundant with respect to the number of host cells-we estimated 10.4-11.8 cells of Cardinium per single female mite cell. In a European D. farinae strain, Cardinium was more prevalent in females than in males (representing 92 and 67% of all bacterial taxa in females and males, respectively). In contrast, D. pteronyssinus lacked any Cardinium species, and the microbiomes of male and female mites were similar. We produced a Cardinium genome assembly (1.48 Mb; GenBank: PRJNA555788, GCA_007559345.1) associated with D. farinae. The ascertained ubiquity and abundance of Cardinium strongly suggest that this intracellular bacterium plays an important biological role in D. farinae.

See more in PubMed

Allergy. 2018 Jan;73(1):115-124 PubMed

J Allergy Clin Immunol. 2005 Dec;116(6):1296-300 PubMed

Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 PubMed

J Allergy Clin Immunol. 2015 Feb;135(2):539-48 PubMed

Ann Allergy Asthma Immunol. 2005 Mar;94(3):323-32 PubMed

Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10255-61 PubMed

Mol Ecol. 2008 Mar;17(6):1427-37 PubMed

Clin Exp Allergy. 1992 Sep;22(9):823-30 PubMed

Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):20025-20032 PubMed

Appl Environ Microbiol. 2013 Sep;79(17):5112-20 PubMed

Bioinformatics. 2009 Jul 15;25(14):1754-60 PubMed

PLoS Genet. 2012;8(10):e1003012 PubMed

PLoS Genet. 2018 Jan 29;14(1):e1007183 PubMed

Int J Med Microbiol. 2018 Aug;308(6):738-750 PubMed

Science. 2011 Nov 18;334(6058):990-2 PubMed

Appl Environ Microbiol. 2009 Nov;75(21):6757-63 PubMed

Mol Biol Evol. 2013 Apr;30(4):772-80 PubMed

Front Physiol. 2016 Feb 24;7:53 PubMed

Appl Environ Microbiol. 2009 Dec;75(23):7537-41 PubMed

J Allergy Clin Immunol. 2003 Apr;111(4):777-83 PubMed

Trends Genet. 2011 Aug;27(8):332-41 PubMed

Clin Exp Allergy. 2018 May;48(5):607-610 PubMed

Exp Appl Acarol. 2015 Jan;65(1):73-87 PubMed

Bioinformatics. 2014 May 1;30(9):1312-3 PubMed

Appl Environ Microbiol. 2017 Apr 17;83(9): PubMed

Mol Ecol. 2004 Jul;13(7):2009-16 PubMed

Front Microbiol. 2018 Oct 16;9:2482 PubMed

Nat Methods. 2013 Oct;10(10):996-8 PubMed

Allergy. 2019 Dec;74(12):2502-2507 PubMed

Insect Mol Biol. 2018 Jun;27(3):333-351 PubMed

BMC Microbiol. 2019 Nov 27;19(1):266 PubMed

Microb Ecol. 2019 May;77(4):1048-1066 PubMed

J Med Entomol. 1998 Jan;35(1):46-53 PubMed

Exp Appl Acarol. 2008 Mar;44(3):199-212 PubMed

PLoS One. 2014 Nov 11;9(11):e112919 PubMed

Genome Biol. 2014 Mar 03;15(3):R46 PubMed

Trends Microbiol. 2019 Jun;27(6):480-488 PubMed

Insect Sci. 2020 Apr;27(2):266-275 PubMed

Immunol Rev. 2011 Jul;242(1):51-68 PubMed

Int Arch Allergy Immunol. 2012;159(3):253-62 PubMed

Infect Immun. 2007 Oct;75(10):4831-7 PubMed

BMC Bioinformatics. 2011 Sep 30;12:385 PubMed

Front Microbiol. 2016 Jul 12;7:1046 PubMed

J Proteomics. 2017 Jun 6;162:11-19 PubMed

Med Vet Entomol. 2015 Jun;29(2):137-46 PubMed

PeerJ. 2016 Oct 18;4:e2584 PubMed

Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 PubMed

Sci Rep. 2016 Sep 27;6:34221 PubMed

J Med Entomol. 2019 Oct 28;56(6):1669-1677 PubMed

Mol Ecol. 2019 Apr;28(7):1826-1841 PubMed

J Allergy Clin Immunol. 1989 Feb;83(2 Pt 1):416-27 PubMed

PLoS One. 2015 May 21;10(5):e0128122 PubMed

Microb Ecol. 2017 Nov;74(4):947-960 PubMed

Bioinformatics. 2009 Aug 15;25(16):2078-9 PubMed

PLoS One. 2015 Jul 08;10(7):e0129996 PubMed

J Econ Entomol. 2016 Aug;109(4):1887-96 PubMed

J Invertebr Pathol. 2013 Jan;112(1):20-3 PubMed

J Proteomics. 2020 Jan 6;210:103535 PubMed

Curr Microbiol. 2019 Sep;76(9):1038-1044 PubMed

J Mol Biol. 1990 Oct 5;215(3):403-10 PubMed

J Econ Entomol. 2016 Mar 27;109(3):1450-1457 PubMed

J Allergy Clin Immunol. 2019 Apr;143(4):1620-1623 PubMed

Microb Ecol. 2019 Feb;77(2):488-501 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...